# Evaluating liquid anaerobic digestate injection vs. surface application for NH<sub>3</sub>-N conservation and corn yield response

Sailesh Sigdel<sup>1</sup>, Heather Karsten<sup>1</sup>, Curtis Dell<sup>2</sup>, and Ronald Hoover<sup>1</sup> <sup>1</sup>Pennsylvania State University; <sup>2</sup>USDA-ARS-PSWMRU, University Park, PA

# Background

- Growing dairy herd sizes, advancement in technologies, and economic incentives have contributed to the installation of anaerobic manure digestors
- Anaerobic digestion increases the pH and NH<sub>4</sub> concentration of the digested manure, increasing the potential for NH<sub>3</sub> volatilization
- Prior studies found that injection of the liquid digestated manure reduced NH<sub>3</sub> loss compared to surface application without incorporation.

# Hypothesis

Liquid digestate injection will reduce ammonia (NH<sub>3</sub>) gaseous loss as well as increase corn nitrogen availability and yield compared to surface broadcast without incorporation

# Materials & Methods

Study sites: Three commercial dairy farms in PA with anaerobic digesters

- Farms apply liquid digested manure prior no-till corn-silage and winter rye or triticale grown for silage, sometimes also in March (2-3 times/annually)
- Farms vary in food waste anaerobic digester inputs, separate solid-liquid from anaerobic digestated manure

Table 1. Digestate application rate and contents for each farm vs. raw manure

|        |                                         |                                                | Raw                                                                   |
|--------|-----------------------------------------|------------------------------------------------|-----------------------------------------------------------------------|
|        |                                         |                                                | manure at                                                             |
| Farm A | Farm B                                  | Farm C                                         | DCS Expt.                                                             |
| 93540  | 56124                                   | 51446                                          | 42093                                                                 |
| 3.63   | 4.61                                    | 4.38                                           | 10.4                                                                  |
| 1.97   | 2.85                                    | 4.84                                           | 4.1                                                                   |
| 1.25   | 1.64                                    | 3.27                                           | 1.4                                                                   |
|        | Farm A<br>93540<br>3.63<br>1.97<br>1.25 | Farm AFarm B93540561243.634.611.972.851.251.64 | Farm AFarm BFarm C9354056124514463.634.614.381.972.854.841.251.643.27 |

**Treatments:** 1. Shallow-disk Injection 2. Surface application

Study design: Side-by-side field scale treatment strips (6.09 to 9.14 m) ranged in length from 187 to 387 meters, same application rate, replicated 5-6 times.





Fig. Side-by-side manure digestate being injected and surface applied at our research site Total digestate N applied: 160-249 kg N/ha; NH<sub>4</sub>-N: 92-168 kg N/ha

- Farms B and C applied inorganic N (49.3 and 27 Kg N/ha resp. as starter)
- Farms A and B applied side-dress N (67.3 Kg N/ha)

### Sampling:

- Ammonia volatilization in the first 24 hours after the liquid is injected or broadcast
- Pre-side dress nitrate soil test (PSNT)
- Corn stalk nitrate levels at corn harvest (10 corn stalks/treatment plot)
- Corn silage yield

Statistical analysis: Data were analyzed using the MIXED Model in JMP Pro 16 (SAS Institute Inc.) with manure application method as fixed effects, and blocks as a random effect. Yield data were pooled after testing for homogeneity of variances with treatments as fixed effect, and loc and block(loc) as random.



# **Digestate injection reduced NH<sub>3</sub> volatilization**



### Fig 2. Ammonia volatilization after digestate was broadcast or injected for farms A and B respectively. \* indicates values that differ at p<0.05

### Table 2. Partial budget economic analysis for each farm

| Partial Budget<br>Economic Analysis            | Farm A      |           | Farm B      |           | Farm C      |           |
|------------------------------------------------|-------------|-----------|-------------|-----------|-------------|-----------|
|                                                | Injected    | Broadcast | Injected    | Broadcast | Injected    | Broadcast |
| Corn Silage Value                              | \$1,151     | \$1,105   | \$1,115     | \$1,070   | \$1,117     | \$1,084   |
| Cost of                                        |             |           |             |           |             |           |
| production/A                                   | \$790       | \$765     | \$674       | \$649     | \$342       | \$324     |
| Injection Cost/A                               | \$25        | -         | \$25        | -         | \$18        | -         |
| Net returns                                    | 361         | 340       | \$441       | \$421     | \$775       | \$760     |
| Difference in net<br>returns from<br>Broadcast | <b>\$21</b> |           | <b>\$20</b> |           | <b>\$15</b> |           |

- are increasing
- side-dress N, possibly starter N

# **Results and Discussion**





## Injection increased net returns compared to surface broadcast on all three farms.

Fig 5. Late Season Cornstalk Nitrate Test (CSNT) results after digestate **application.** \* indicates values that differ at p<0.05

### Across farms, corn yield was greater with injection than surface broadcast at p<0.1



# Implications

### Digestate injection can conserve N, potentially increase yield and returns on investment as N fertilizer prices

Soil & crop N tests indicated N availability and potential for loss is high, farms could reduce or eliminate







www.agchange.org



# **PSNT and CSNT indicates there was** more than sufficient N

IOWA STATE

UNIVERSITY

