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Abstract 

In relativity, time is relative between reference frames. However, quantum mechanics requires a 
specific time coordinate in order to write an evolution equation for wave functions. This 
difference between the two theories leads to the problem of time in quantum gravity. One 
method to study quantum relativity is to interpret the dynamics of a matter field as a clock. In 
order to test the relationship between different reference frames, an isotropic cosmological model 
with two matter ingredients is introduced. One is given by a scalar field and one by vacuum 
energy or a cosmological constant. There are two matter fields, and thus two different 
Hamiltonians are derived from the respective clock rates. Semi-classical solutions are found for 
these equations and a comparison is made of the physical predictions that they imply. 

 

Introduction 

Quantum mechanics and general relativity are two of the most rigorously tested theories in 
modern physics. Quantum mechanics, which excels at describing the smallest constituents of the 
universe, has the power to explain many of the problems that baffled classical physicists on the 
small and every day scale. General relativity on the other hand, is best at describing the universe 
on a large scale. The framework of general relativity models gravitation on the geometric 
properties of a continuous space-time that spans the universe. Furthermore, general relativity is 
the basis of many modern cosmological models. Problems arise when one tries to incorporate 
quantum mechanics with theories of gravitation or cosmology, typically referred to as quantum 
gravity or quantum cosmology. The problems stem from the mathematical differences 
underlying quantum mechanics and general relativity. While general relativity requires space to 
be continuous, quantum mechanics requires that everything is “quantized", or to exist in small 
pieces. This fundamental difference may, on the surface, seem like something that can be dealt 
with easily. However, the problems that follow from this difference have challenged physicists 
for the past century. 

This paper will deal with the theory of quantum cosmology. Quantum cosmology starts with a 
quantization of a structureless, homogeneous chunk of space as a first approximation to a “space-
time" atom.  

The Friedmann equations are a set of equations in physical cosmology that govern the expansion 
of space in homogeneous and isotropic models of the universe within the context of general 
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relativity. Classically, the Friedmann equation is covariant so one is able to transform the time 
parameters without changing other physical parameters. Quantization, however, introduces 
correction terms to the classical model that makes it unclear whether or not we can still transform 
time in this way [1]. The motivation for this paper is the fact that while the time coordinate is not 
quantized since it is a coordinate and not directly observable, we are still able to model time 
using a method called deparameterization. Deparameterization involves using matter variables as 
an internal time. More specifically, we have one model in which we have two options as internal 
time. In this paper we try to solve them and subsequently compare their quantum evolutions. A 
paper by Styer [2] presents a method that can be expanded to find semi-classical solutions for 
these two cases. We apply this method and compare the physical predictions that they imply. 

This paper is organized as follows. We start by setting up our isotropic cosmological model and 
defining the classical conditions of this model. We then consider quantization and utilize a 
Taylor expansion to find approximate solutions. Standard numerical analysis is used to find 
semi-classical solutions for our equations. We conclude by making comparisons between each 
matter clock's respective solution and discuss the physical implications of such comparisons. 

 

Methods 

Classical Model 

If we assume coordinates xa such that a=1,2,3, this implies that the coordinate volume V0=∫ d3x 
is dependent on our choice of coordinates. We can make the volume coordinate independent by 
using a metric tensor hab and defining V=∫ √detℎab d3x which instead depends only on the 
metric. This is considered a physical field in general relativity. 

The Friedmann equation for a homogeneous, isotropic, flat chunk of space, (hab=a(t)2 δab) in 
Cartesian coordinates is 

 
where a(t) is the scale factor and ρ is the energy density of matter. For our purposes, V is 
proportional to a3. The Friedmann equation is a constraint in quantum cosmology rather than an 
evolution generator so we have to use a method called deparameterization to determine 
evolution. The idea of deparameterization is to take a special choice of matter field coupled to 
space-time so that its homogeneous value can formally play the role of time. The most common 
example is a free, massless, scalar field ϕ with momentum pϕ and energy density ρ = pϕ/2a6. 

Then from the Friedmann equation, we get  
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It follows that the equations of motion are 

 
We now introduce a cosmological constant Λ and have the energy density,  

 
Substituting this into the first part of the Friedmann equation and solving for pϕ gives us  

 
Quantization 

Now we consider the case where the cosmological constant is an operator, 

 
This is appropriate to do because all commutators are zero. We introduce  

 
which is analogous to the Hamiltonian and a dummy variable T such that 

 
and the condition that  

 
Application of Taylor Expansion 

We will apply semi-classical methods to the Hamiltonians pT and pϕ: 
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These Hamiltonians are not quadratic, which means that the equations obtained following the 
procedure outlined in Styer’s paper [2] cannot be solved exactly. However, we can use several 
approximations. As a first step, we can use a Taylor expansion to second order, and apply 
methods as used in [2] to the resulting quadratic expression. We will see differences between 
using T and ϕ at this level. 

Using a Taylor expansion of p to second order, we get 

 

 
Now we have to determine the time derivatives 

 
First, we compute the order terms for all of the time derivatives. 

 
For the V and H expectation value derivatives, we will consider the third order terms of the 
Taylor expansion. 
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Explicitly, the third order terms of the Taylor expansion are

 
After solving, we see that the third order time derivative solutions are as follows 

 
Analytical and Numerical Solutions 

With the Taylor expansion completed and the time derivatives solved for algebraically, we can 
substitute our choices for p, namely pT and pϕ, to find dV/dt for each case. After resolving and 
simplifying the derivatives, we get 

 
We can see that dV/dϕ has a much more complicated form than does dV/dT. However, observe 
that the second term in dV/dϕ approaches zero and the third term is of order 1/H2 for small 
$\Lambda$. This is a reasonable approximation due to the fact that the observed cosmological 
constant is very small. As a result, we exclude the second and third terms from dV/dϕ for our 
purposes. We will check this approximation numerically. 



96 
 

For the cases of dH/dϕ and dH/dT, we get 

 
Observe that for dH/dT, the second term decays as 1/V5. So for large V (an older universe), the 
second term is much smaller than the first. The second term in dH/dϕ is approximately zero due 
to the same reasoning as in the case of dV/dϕ.  

 
We solve for V and dV/dT. 

 
After solving V0 = V(0) and H0 = H(0), we get  

 
Now we have to transition to proper time.  

 
Integrating dT/dτ gives us 
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Now we consider the ϕ system. 

 
One can still solve for $V$ and $H$, but the process is much longer. Instead of solving the ϕ 
equations, one can look at the equations and rewrite dV/dϕ as the expansion rate.  

 
Since proper time is measured, it should be the same between reference frames. Classically, V/V 
is indeed the same between our two frames. This can be seen by comparing (1) and (2).  

As we bring in the quantum correction terms to the T system, the V equation is unchanged, but 
the H equation is changed. In the ϕ system, both equations change. Even though (1) and (2) are 
the same classically, they will be different when quantum correction terms are introduced. 

 

Discussion and Conclusions 

As the main result, we have shown that the quantum corrections result in differences between the 
T and ϕ systems. This result is independent of the approximations made in the Analytical and 
Numerical Solutions section. If one were interested in complete solutions, one would have to use 
approximations or full numerics.  

After resolving the derivatives from the Taylor expansion, the constant terms h1, h2, and h3 made 
it impossible to find closed form solutions for our equations. Because of this, we used numerics 
to find solutions. We used Mathematica's standard procedure for numerical analysis and were 
able to determine appropriate initial conditions for our systems. 
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Figure 1. Plots the volume fluctuations of the universe with respect to time. The fluctuations 
grow rapidly, which may not be expected in a classical universe. However, the volume 
expectation value is increasing as well. 

 
Figure 2. Plots the volume fluctuations of the universe over the volume of the universe with 
respect to proper time. This agrees with semi-classical behavior because the ratio (∆V)2/V2 is a 
small constant at large τ. Qualitatively, this agrees with the observed universe. 
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