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Abstract 
 
Neuromorphic visual perception algorithms have become increasingly popular as they enable a 
wide array of vision based applications. HMAX is an example of a neuromorphic visual feature 
extraction algorithm that has been shown to perform well for large scale object and scene 
recognition tasks. While the accuracy of HMAX is considerable, its high computational latency 
makes it prohibitive for many real time applications. Hardware acceleration is a widely accepted 
technique for mitigating the computational latency of complex algorithms and has been 
investigated for HMAX specifically.  However, prior investigations of hardware accelerated 
HMAX have not produced latencies that are suitable for large-scale real-time classification.  
Using a holistic approach, this work proposes both algorithmic optimizations and hardware 
customization techniques to accelerate HMAX beyond current state-of-art implementations.  
Results show confirmation of a future version of HMAX with potentially improved execution 
time, while still performing at a reasonable accuracy. 

 
 Introduction 

 
Neuromorphic vision algorithms is a popular topic within computer vision. These algorithms 
mimic the way the mammalian visual cortex processes visual stimuli and have fostered a wide 
range of applications [1,2,3]. For example, utilizing the efficiency and robustness of 
neuromorphic algorithms, a visual prosthesis device can be engineered to augment the quality of 
life for visually impaired persons. A key task in such a system is object identification which 
relies on visual features to distinguish object classes. HMAX is one such neuromorphic 
algorithm that extracts visual features from an image for use in classification. HMAX is able to 
achieve considerable accuracy; however this accuracy comes at a high computational cost [4].  
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HMAX Model 
HMAX is a four stage feature extraction model derived as an extension of the algorithm 
developed by Mutch & Lowe [5]. The model uses a combination of template matching, and 
maximum response collection to extract the edge-based features that are present within an image.  
 
S0 Stage  
This first stage acts as a preprocessing stage that creates a multiscale image pyramid from the 
original input image. This process is necessary to enable scale invariant feature extraction for 
objects that may appear at arbitrary sizes.  In this work we extract features from twelve image 
scales. 
 
S1 Stage 
The S1 stage then takes all twelve scales and convolves it with an 11x11 Gabor filter to detect 
edges present within the image. The Gabor filter is described by Eq (1) where X = xcos(θ) + 
ysin(θ) and Y= -xcos(θ) + ysin(θ), x and y varies between -5 and 5,  θ varies between 0 and π, 
and the wavelength (λ), width (σ), and aspect ratio (γ) are 5.6, 4.6, and 0.3, respectively. 

C1 stage 
The C1 stage utilizes a 10x10x2 3D max filter to find maximum responses from the Gabor 
convolution for each orientation across two different scales.  
 
S2 stage 
This stage of the HMAX model then takes a dictionary of prototypes and correlates every 
applicable prototype to the output of the C1 stage. Eq (2) describes this stage. The numerator of 
Eq (2) details the correlation of each C1 output, X, against a prototype, P, and, the accumulation 
of those responses across orientations. The denominator denotes the calculation of the 
normalization patch, where xi is a single C1 output (n={4,8,12,16}; m=12). After the 
accumulation across orientations is finished pixel wise division is done with the normalization 
patch.  

 
 
C2 stage 
The C2 stage does a global pooling of all the S2 stage output data, by removing all spatial 
information and recording maximum responses across two sets of scales. Once these four stages 
have been completed the information is then passed to a classifier to detect the object within the 
image.  
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The Computational Cost of HMAX 
The main bottleneck of the HMAX algorithm is in the S2 stage where the output from the C1 
stage is correlated with the template dictionary [4]. The dictionary contains over five thousand 
prototypes which must be spatially correlated with each C1 output. Spatial correlation can be a 
costly process for a large number of inputs, as spatial correlation requires numerous 
multiplications and accumulations. But correlation in the Fourier Domain costs less, as those 
multiplications and accumulations now become single point-wise multiplications [6]. This 
project demonstrates using frequency correlation in the S2 stage to reduce execution time while 
still maintaining the baseline accuracy. In addition, this project also explores adding the spatial 
information originally removed in C2 stage, as adding spatial information along with a feature 
vector has shown to improve classification accuracy in other areas [7]. 

 
Methodology 

 
The HMAX algorithm, written in C++ by Jim Mutch, served as the foundation of the 
experimentation. The project consisted of seven experiments total. The purpose of the first five 
experiments was to confirm our hypothesis of doing correlation in the Fourier domain, while still 
maintaining the baseline accuracy. The sixth and seventh experiment were used to evaluate the 
accuracy from adding spatial information to the final C2 vector.  
 
Experiment 1: Fourier-A 
The objective of this experiment was to perform a Fourier transform of the C1 output to do 
frequency correlation in the S2 stage, but then return back to the spatial domain to normalize the 
data as in the original algorithm. This information was then sent to the C2 stage for the global 
pooling.  
 
Experiments 2-4: Fourier-B, Fourier-C, Fourier-D, & Fourier-E 
These experiments again used frequency correlation in the S2 stage, but remained in the Fourier 
domain for the C2 stage. The data was normalized beforehand using an approximated 
normalization patch. This was done to test whether we could still achieve a reasonable accuracy 
without the calculated normalization patch. Four experiments were done to find the best value, 
which represents the maximum response from pooling in the Fourier domain. In Fourier-B, the 
final C2 vector was composed of the average power of each max Fourier coefficient [8]. Fourier-
C’s final C2 vector was composed of the peak magnitude. Fourier-D and Fourier-E’s maximum 
response was composed of the max real and max imaginary value respectively. 
 
Experiments 6-7: Spatial A and Spatial B 
These two experiments were conducted to evaluate adding spatial information to the C2 output to 
improve classification accuracy. This was done in two ways using time-domain correlation. In 
experiment Spatial A, a linear combination of the (x,y) coordinate and the scale size was given 
along with the max response. In experiment Spatial B, the (x,y) coordinate pair was given along 
with the max response to evaluate the accuracy. The linear combination technique was done to 
minimize the amount of information given to the classifier, while still adding spatial info for 
better accuracy.  
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Ten classes of images from a dataset of grocery images were used for evaluation, with 
approximately 1200 images used for training, and 300 images used for testing. For each 
experiment the accuracy was recorded for comparison against the baseline HMAX 
implementation.  
 
Three different classifiers were used for evaluation of experiments six and seven. This was done 
to gather data on the type of classifier which would yield the highest accuracy. The RLS and the 
SVM-linear classifier was used to evaluate the accuracy from using a linear classifier. The SVM-
RBF was used to evaluate the accuracy from using a non-linear classifier. Since the purpose of 
the first five experiments was to confirm our hypothesis of doing the template correlation in the 
Fourier domain, classification was only done with the RLS classifier. After finishing the 
experiments, the next phase of the project was to model a hardware implementation with the 
information gathered from Experiments 1-5. This was done to observe a reasonable decrease in 
execution time from using frequency correlation in the S2 stage. 

 
Results 

 
Table 1 shows the results from the experiments Fourier-A, Fourier-B, Fourier-C, Fourier-D, 
and Fourier-E. The table shows the accuracies recorded from each individual experiment 
conducted using the RLS classifier. Baseline refers to the baseline HMAX accuracy for the ten 
classes of images. 
 
 

 
 
 
 
 

Table 1. From the results it shows that we can achieve comparable accuracy to the baseline 
Accuracy using the architecture of Fourier-A 
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Table 2 shows the results from the experiments Spatial-A and Spatial-B. The table shows the 
accuracies recorded from each individual experiment conducted using a specific classifier. No 
Spatial Data refers to the baseline HMAX accuracy for the ten classes of images.  
 

Discussion 
 
With the results from experiments one through five, it can be seen that we can perform the S2 
stage of  HMAX in the Fourier domain, while still achieving considerable accuracy by doing the 
C2 stage in the time-domain. However, the low accuracies in experiments two through five may 
be attributed to the approximated normalization values used for these experiments. More 
favorable results may have been achieved if we had instead used the same normalization patch as 
in experiment Fourier-A. As for adding spatial info to the final C2 vector, in all cases, doing so 
decreased the accuracy considerably. This was most likely due to not enough variance between 
the data for any classifier to adequately make distinctions between different images. 

Theoretical Architecture 
A high-level architecture of the modified HMAX model was developed using the data gathered 
from Experiments 1-5. Equation 3 and Table 3 describe a model for the baseline HMAX 
architecture, as well as the modified architecture to conduct correlation in the Fourier-Domain. 
S2(Baseline) denotes the S2 stage with the baseline HMAX architecture and S2(Fourier-A) 
denotes the S2 stage with the modified Fourier HMAX architecture. The purpose of this model 
was primarily to observe the speed in the S2 stage from doing correlation in the Fourier domain. 
Therefore, the cost of going into and out of the Fourier domain was not included. 
 
 

(3)  

Table 2. Adding spatial info to the final C2 vector in all cases hindered the classification accuracy.  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑆𝑆𝑦𝑦 =
(#𝑂𝑂𝑂𝑂𝑆𝑆𝑂𝑂𝑂𝑂𝑆𝑆𝑃𝑃𝑂𝑂𝑥𝑥𝑆𝑆𝑂𝑂𝑂𝑂 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑆𝑆𝑦𝑦𝑃𝑃𝑆𝑆𝐿𝐿𝑃𝑃𝑂𝑂𝑥𝑥𝑆𝑆𝑂𝑂 + 𝐹𝐹𝑆𝑆𝑂𝑂𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑆𝑆𝑦𝑦) ∗ (𝑍𝑍𝑆𝑆𝑂𝑂𝐹𝐹𝑆𝑆) 

𝐶𝐶𝑂𝑂𝐶𝐶𝑆𝑆𝐶𝐶𝐹𝐹𝐿𝐿𝑆𝑆𝐶𝐶𝑂𝑂𝑆𝑆𝑛𝑛𝑆𝑆𝑦𝑦
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Figures 1 and 2 detail a block diagram of architecture from using the modifications from 
Experiment Fourier-A. Theoretical execution times were drawn from both models using Eq (3) 
and Table 3 at a 100 MHz clock frequency, 
 

 
 
 
 
 
 
 
 

Table 3. Listing of latency and output values for both the baseline and the modified architecture 

Figure 1. Depicts an overview of the S1-C1 stage and the S2-C2 stages. The S1-C1 stage consists of multiple 
Gabor engines each with their own max pooling unit 
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Memory resources were also recorded for both models. As can be noted from figures 3 and 4, 
Model Fourier-A has a 50x speedup versus the Baseline model, but on the other hand uses far 
more memory. This increase in memory consumption is due to extra padding needed for 
frequency correlation at various scales [6]. An alternative to this approach would be to convert 
the prototypes to the Fourier domain online, but this would require more DSP resources.  
 

Figure 3. Graph shows a 50x Speedup 
from using frequency correlation 

Figure 4. Graph shows a 387x increase 
in memory resources consumed 

Figure 2. Depicts the S2 stage architecture, with several multiplier arrays 
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Future Work 
 

The S2 stage currently uses a general dictionary composed of templates collected using a variety 
of photographs from the natural world. Using this dictionary, HMAX can perform at a significant 
accuracy, but this accuracy was only for ten classes of images. As can be seen in previous work 
[9], HMAX has been known to top out in accuracy at around twenty classes of images. This is 
due to the edge features extracted from HMAX not containing enough variance for more than 
twenty classes of images. This lack of variance then hinders any classifier from being able to 
yield a decent accuracy. In order to compensate for this, future work will look at using a more 
customized dictionary in the S2 stage. Future work should encompass using a more specialized 
dictionary, whereby the patches are instead extracted from the dataset being tested on. 
 
In addition to a customized dictionary, future work will also investigate the effects of zero 
padding the image before doing a Fourier transform. Because of the amount of zero padding that 
needs to be done at different scales, the size of pre-converted patch coefficients is rather large. 
This extra padding was done to avoid wrap around error when converting to the Fourier domain 
[10]. However, the error produced from neglecting to zero pad the image may be negligible and 
may still yield satisfactory results. If the findings are true, then the amount of storage needed for 
the template coefficients will be cut down to one-fourth the original size. 
 
The theoretical architecture developed does not account for the cost of going into and out of the 
Fourier domain. At the front end, the cost to convert the C1 data to the Fourier domain is 
negligible. However at the backend, that 50x speed up would be lost from having to convert all 
the data from the S2 stage back to the spatial domain. This is motivation for looking at schemes 
to extract viable features from the Fourier domain, making the large number of inverse Fourier 
transforms unnecessary. 

 
Conclusion 

 
In this paper, we describe various methods to increase both the accuracy and the execution time 
of the state-of-art HMAX feature extractor. We developed several experiments in software to test 
our theories of improving accuracy using spatial info, and conducting correlation in the Fourier 
domain. Results show that adding spatial information to the final C2 vector hinders the 
classification accuracy. However, HMAX can be accelerated using the Fourier domain for 
correlation while still maintaining the baseline accuracy. 
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