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Abstract 
 

Fieldwork is the traditional basis for creating fuel hazard maps, but it is not 

always cost or time effective. This study utilizes remote sensing and GIS technologies to 

analyze Landsat 8 and other geographic layers, exploring the use of the Normalized 

Difference Vegetation Index (NDVI) and the Normalized Difference Moisture Index 

(NDMI) as surrogates for fieldwork data to provide an inexpensive alternative for 

deriving a wildfire hazard map. The study focuses on the fire that occurred March 1,
 

2015, on Table Mountain National Park in Cape Town, South Africa, where the primary 

vegetation is the fire-adapted Fynbos shrubland. Calculation of NDMI values was 

coupled with a traditional NDVI analysis to provide additional information about plant 

moisture. A pre-burn Landsat 8 image was analyzed for fire hazard using five variables: 

vegetation moisture, slope, aspect, elevation and distance from roads and then compared 

to post-burn imagery to test the method’s accuracy. The results indicate that NDMI may 

be a stronger indicator of fire hazard than the more popular NDVI. 
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Introduction 
 

Wildfires are complex events that occur as a result of natural and human factors 

and are hazardous to people and the natural environment (Merlo and Rojas Briales 2000; 

Wenliang et al. 2010). Recent changes in both climate and anthropogenic factors related 

to fire hazard could transform traditional fire regimes and exacerbate the risk of fire and 

its negative impacts. Among these factors, the influence of climate warming on increased 

fire frequency and intensity has been documented in several ecosystems (Kasischke and 

Turetsky, 2006; Westerling et al., 2006). The encroachment of the built environment into 

areas of high fire risk is another important factor. This situation provides urgency for 

understanding the risk that wildfire hazards pose.  

Evaluating the risk of fire hazard is a critical part of preventing fires and reducing 

fire’s negative impacts. The fire hazard risk is defined as a combination of the hazard and 

potential damage. By determining areas of high fire risk it is possible to minimize threats 

to life, property, natural and economic resources (Adab et al., 2013). Pre-fire planning 

resources require objective tools to monitor when and where a fire is more prone to 

occur, or when it will have more negative effects (Martinez et al., 2009). To understand 

fire hazard, fieldwork is traditionally used to collect vegetation information via sample 

plots. This usually requires sending researchers to sample vegetation over large areas. 

This research is often time consuming and expensive because it requires multiple skilled 

workers. The use of satellite imagery with a GIS offers a cheaper alternative that could 

potentially save time and money.  

The wildfires of Cape Town, South Africa were used as a case study for the 

potential application of remote sensing and GIS technologies for wildfire hazard analysis. 

This study sought to determine whether vegetation information derived from remote 

sensing data could serve as a sufficient surrogate for collecting field data when mapping 

fire hazards. It investigated the potential of using the Normalized Difference Vegetation 

Index (NDVI) and the Normalized Difference Moisture Index (NDMI). However, the 

fuels are difficult to discriminate between using only these indices, and therefore the 

Structural Fire Index (SFI) was used to incorporate other influential factors.  

 

 

Study Area 
 

The study region is Table Mountain National Park. The park extends across the 

Cape Peninsula to include Table Mountain and the Silvermine Nature Reserve and is 

adjacent to the city of Cape Town (Figure 1). The wildfire studied here occurred within 

the Silvermine area of the park. 

The area surrounding Cape Town, South Africa, is prone to burning because of 

the natural fire cycle in the Fynbos biome, a fire-adapted shrubland and heath 

environment located only on the Cape Peninsula. This study looks at the fire that began 

March 1, 2015, and burned intensely across the landscape. Such fire events are natural in 

Fynbos, which on average burns every 10-15 years (Cowling 1992), but the fire’s close 

proximity to this highly urbanized area presents a danger to humans. There has been 

limited research conducted on Fynbos fires. Historically, fires were ignited at high 

elevations from lighting strikes (Cowling 1992) and then burned downslope into the 
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valleys. However, urbanization has fragmented the landscape and slowly encroached up 

the mountainside.  This landscape change has altered the fire cycle by preventing the 

natural spread of the fires from mountains into the valleys.  

The climate is generally categorized as Mediterranean, and although lightning 

strikes occur infrequently in Mediterranean climates, they are a higher risk than human-

caused fires. Fires ignited by lightning tend to burn larger areas because they occur in 

more isolated and steeper areas and frequently have various simultaneous ignited spots. 

The resultant fires are more difficult to control (Wotton and Martell, 2005). Many 

developed countries, such as the United States and Canada, have meteorological stations 

available to monitor lighting strikes and relate them to wildfires (Wontton and Martell, 

2005; Martinez et al., 2009). In contrast, despite its proximity to an urban area, South 

Africa does not have meteorological stations capable of monitoring lightning strikes close 

to the site of the fire studied in this paper. 

 

 

Remote Sensing of Surface Fuel 
 

Remote sensing offers a wide range of sensors that can assist in fire fuel mapping. 

There are many limitations to this application, such as the complexity of fuel types and 

high spatial and temporal variability (Keane et al., 2001). The most important limitation 

of these sensors is their inability to penetrate forest canopies and detect surface fuels 

(Keane et al., 2001), especially where two or more canopies are present. The application 

of this technique to shrubland areas such as the Fynbos biome, which have no overstory, 

is potentially more viable. 

The earliest applications of remote sensing used medium to low-resolution 

multispectral approaches to identify fire fuels, classifying an image into vegetation 

categories and then assigning fuel characteristics to each category. Kourtz (1977) 

introduced several digital techniques for Landsat fuel-type classification including 

supervised classification (maximum likelihood), unsupervised classification, and 

principal components analysis. These methods require an input of spectral signatures 

from specific fuel classes that are usually obtained from fieldwork.  

In research that applied remote sensing without fieldwork, several researchers 

attempted to map fuel types using multispectral sensors such as Landsat Multispectral 

Scanner (Landsat MSS) or Thematic Mapper (TM) (Salas and Chuvieco, 1995; Castro 

and Chuvieco, 1998; van Wagtendonk and Root, 2003). Fuel types have also been 

mapped by applying maximum likelihood decision rules to Landsat MSS and SPOT data 

(Chuvieco and Congalton, 1989; Chuvieco and Salas, 1996; Castro and Chuvieco, 1998) 

with accuracies ranging from 65% to 80% (Chuvieco et al., 1999). Studies have explored 

the use of tasseled cap transformation of Landsat TM multispectral data. These studies 

include Van Wagtendonk and Root’s (2003) use of an unsupervised classification of 

NDVI, combined with graphical, visual and statistical techniques to identify 30 fuel 

classes. The accuracy reported by these authors was 65% and with the combined use of 

ancillary data (NDVI, slope, texture, illumination) accuracy improved up to 85.9% 

(Riano et al., 2002; Francesetti et al., 2006). Other studies utilized National 

Oceanographic and Atmospheric Administration-Advanced Very High Resolution 

Radiometer (NOAA-AVHRR) images (McGinnis and Tarpley, 1985). AVHRR imagery 
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is popular for fire monitoring; however, its coarse resolution limits the use to regional 

and global scales (Dennison et al., 2005; Chuvieco and Congalton 1989; Chuvieco et al., 

2004). 

 

 

Methods 
 

This study employed a minor modification to the fire hazard mapping method 

introduced by Chuvieco and Congalton (1989). In contrast to the original method, this 

study uses NDVI and NDMI values calculated from Landsat 8 imagery collected before 

the fire events. The fire occurred on March 1 and cloud-free images collected closest to 

that date occurred on February 23, 2015 (pre-burn) and March 11, 2015 (post-burn).  The 

two images were clipped to the area extent (Figure 1, below).  

 

Vegetation Mapping 

The pre-burn imagery was analyzed using the Normalized Difference Vegetation 

Index (NDVI) and Normalized Difference Moisture Index (NDMI).  For Landsat 8, the 

equations are as follows: 

 

Equation 1   𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅−𝑅)

(𝑁𝐼𝑅+𝑅)
 

 

where NIR and R are the Landsat 8 Near-Infrared (5) and Red (4) bands, respectively; 

and 

 

Equation 2   𝑁𝐷𝑀𝐼 =  
(𝑁𝐼𝑅−𝑆𝑊𝐼𝑅)

(𝑁𝐼𝑅+𝑆𝑊𝐼𝑅)
 

 

where NIR and IR are the Landsat 8 Near-Infrared (5) and Shortwave Infrared (6) bands, 

respectively. 

NDVI values vary according to radiation absorption by the chlorophyll in the red 

spectral area and its reflectance in the near infrared spectrum (Dragomir and Petrosani 

2012). The index values correspond to the consistency of the green vegetation and are 

useful for mapping vegetation health. This study assumed low NDVI values are usually 

associated with unhealthy and drier plants, while high values indicate good health.  

NDMI values vary according to radiation absorption of the short-wave infrared 

band and reflectance of the near infrared. The index evaluates the different content of 

humidity from the landscape (soils, rocks and vegetation) and is an excellent indicator of 

dryness (Dragomir and Petrosani 2012). Vegetation moisture condition is important 

because it influence the flammability of the fuel. 

 

Topographic Data 

 

DEM. Elevation influences vegetation structure, fuel moisture, and air humidity (Castro 

and Chuvieco 1998). Two digital elevation model (DEM) files were obtained from the 

Shuttle Radar Topography Mission (SRTM) and mosaicked to form a single DEM of the 

Cape Town area. The resulting DEM was reclassified into three classes and assigned a 
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hazard level of low, medium or high. Elevations between -17m and 100m were assigned 

a low hazard value. These areas are dominantly composed of highly urban flatland. The 

urban areas have limited Fynbos vegetation and therefore were considered a lower risk. 

Elevations between 100m - 200m were considered a medium hazard. The elevation of 

200m is roughly the average elevation of the street that demarcates the bottom of the 

mountain in the Silvermine Nature Reserve and serves as a boundary between the natural 

area and the city of Cape Town below. This boundary serves as a firebreak between the 

reserve and the city below. The Fynbos vegetation primarily occurs at elevations above 

200m and constituted the high hazard zone. Lightning is the natural ignition source of the 

fires and strikes at high elevations.  

 

Aspect. Aspect is correlated with the amount of insolation an area receives. Aspects that 

experience higher insolation are assumed to have drier vegetation than aspects that are 

usually shaded. In the Southern hemisphere, northern facing aspects experience more 

insolation and are therefore more likely to have higher temperatures and drier vegetation. 

Western facing slopes also receive more insolation than eastern facing slopes because the 

sun's rays are strongest during the afternoon. Because of that relationship, fuels on north-

facing and west-facing slopes present a higher fire hazard. An aspect map was derived 

from the DEM and then reclassified based on approximate insolation and then hazard 

risk. The classes included three sectors: west - north (high), northeast - southeast 

(medium) and south - southwest (low).  

 

Slope. Slope is a variable that influences the spread rate of the fire: fire moves more 

quickly upslope and less quickly downslope. Steep slopes over 40% are reported as a 

crucial threshold for fire operations and increase the rate of fire spread (Brass et al., 

1983). The classes for slope values were created based on natural breaks in the histogram 

to reflect the topography. The classes included 0 - 13% (low), 13 - 38% (medium) and 38 

- 65% (high). 

 

Fire Hazard Modeling - Structural Fire Index (SFI) 

 

The Structural Fire Index (SFI) was used to delineate fire risk. The SFI is an 

empirical weighted index based on the combination of five variables influencing fire risk 

in Mediterranean and semi-arid climates: vegetation moisture, slope, aspect, elevation, 

and distance from roads (Chuvieco and Congalton 1989). The variables in the index are 

the basic factors that affect forest fires in Mediterranean areas (Chuvieco and Congalton 

1989). Vegetation is the most influential factor, with a weight of 100, whereas elevation 

is the least influential with a weight of 2. This index has previously been employed in 

Spain (Chuvieco and Congalton 1989), Portugal (Pelizzari et al., 2008) and Iran (Adab et 

al., 2013) to map forest fire risk.  

All topographic files were converted to raster and reclassified with integer values 

corresponding to fire hazard rank. NDMI and NDVI values were multiplied by 1000 to 

reflect the decimal values. Variables are ranked from highest to lowest influence on fire 

hazard, respectively: vegetation, slope, aspect, and elevation. The following formulas 

respectively represent the original SFI of Chuvieco and Congalton (1989) and the 

modified SFI used here: 
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Equation 3  𝑆𝐹𝐼 = 1 + 100𝑣 + 30𝑠 + 10𝑎 + 5𝑟 + 2𝑒 

 

Where v, s, a, r, c = vegetation, slope, aspect, distance from roads, and elevation, 

respectively. 

 

Equation 4  𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑆𝐹𝐼 = 1000𝑣 + 30𝑠 + 10𝑎 + 2𝑒 

  

Where v, s, a, e = vegetation index (NDVI or NDMI), slope, aspect, and elevation, 

respectively. Distance to roads was dropped because there were no road data available in 

the study area. 

The resulting index was used to provide a visual depiction of areas with predicted 

high fire hazard. The final values were displayed as a continuous raster rather than 

divided into hazard classes to allow better visual emphasis on the differences.  

 

 

Results 
 

The following figures present the processed data layers that were combined to 

form the hazard model; i.e., the modified SFI. Figure 1 shows Landsat 8 images of Table 

Mountain National Park and adjacent Cape Town, South Africa.  

 

 
 

Figure 1: Landsat 8 pre-burn imagery (February 23 2015) and post-burn imagery (March 

11 2015). Courtesy of the U.S. Geological Survey. 

 

The mountainous area outlined in blue is Silvermine Nature Reserve, an area 

within the larger Table Mountain National Park. The images highlight the difference 
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between vegetation in Silvermine before (left image) and after the fire (right image), with 

the brown area in the post-burn image showing the extent of the burnt area. The fire 

burned approximately 17,000 acres of the reserve. 

Slope (Figure 2) was not found to be a strong indicator of fire hazard. The total 

burned area of high-risk slopes was minimal. Although there was correspondence 

between medium to high-risk slopes and burned areas, there was also a large portion of 

low-risk slope that burned. However, it should be considered that slope is an indicator of 

high risk for fire spread and not necessarily an indicator of highly burnable material. 

The elevation layer (Figure 2) was divided to discriminate between the city of 

Cape Town and the mountains in Table Mountain National Park, with a major road 

(around 200m) serving as the break point. In the natural state, Fynbos would burn at 

lower elevations as well as higher elevations, but the city has been built over the natural 

vegetation. The higher elevations were all predicted to be high-risk areas as this is where 

lightning, a primary source of Fynbos fires, is most likely to strike. 

The aspect layer introduced the most noise into the equation. Although there was 

correspondence between the predicted medium-risk to high-risk areas (Figure 2), there 

was also a large portion of the city predicted to burn due to the aspect layer being 

weighed so significantly in the SFI formula. While aspect does provide insight into which 

areas may have drier vegetation, it does not seem to be extremely important in this 

analysis. 

 

Figure 2: Slope elevation and aspect classes for fire hazard model, respectively 

 

The first model was run with NDVI values substituting for discrete vegetation 

classes. By itself, the NDVI layer was a good visual indicator of greenness. However, 

when used in the formula, the results were too broad (Figure 3). By not presenting 

multiple vegetation layers, the low Fynbos shrubland allows NDVI to represent the entire 

range of vegetation. Nonetheless, the highly flammable shrubs do not produce high 

positive NDVI values and, when combined with other landscape attributes, do not appear 

to be clearly at risk. Ironically, many agricultural areas are identified as high risk. 
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The second model was run with NDMI values as a substitute for discrete 

vegetation classes. When compared to the NDVI model, this model displays better 

correspondence with the burned areas (Figure 4). 

 

 
Figure 3: Fire hazard model with NDVI substitute for vegetation  

 

 
Figure 4: Fire hazard model with NDMI substitute for vegetation 
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Conclusions 
 

The knowledge of fuel characteristics is essential to fire management because it 

can be used to estimate fire hazard, risk, and impacts. Although fire fuel mapping has 

traditionally been performed through fieldwork, this is a time-consuming and expensive 

method. Remote sensing and GIS systems potentially offer a cost-effective alternative to 

fieldwork. This study investigates that possibility of combining topographic information 

with NDVI and NDMI to produce a structural fire index in order to identify areas most 

likely to burn.  

The results suggest that the highest elevation areas are at greatest risk. This is 

most likely because higher elevations are where the Fynbos vegetation is present and is 

also most exposed to lightning strikes. Steep-sloped areas are also high-risk areas because 

of chimney effects. Low-slope areas can be at high risk, too, but only if they occur at high 

elevation where they are exposed to lightning strikes. Aspect does not appear to 

contribute to hazard risk, and NDVI does not by itself discriminate fuels adequately to be 

a valuable tool in this application. NDMI shows promise for future applications because 

it does a better job discriminating fuel loads; higher resolution imagery or better ancillary 

information could improve future results using NDMI. In the end, however, the results 

are too indefinite to be valuable for fire forecasting. 

Although the findings are inconclusive, they do offer the potential for better 

results with improved analytical techniques and data. While the hazard index was 

incapable of adequately predicting risk, the coupled NDMI and NDVI did provide 

information on the range of Fynbos. The indices also showed where the vegetation was 

driest and therefore at a risk of burning. By combining that information with different 

topographic variables, the analysis demonstrated that areas of lesser and great risk could 

be mapped. 

The analysis was limited by the short period analyzed, the subjective weighting 

system used in the formula, and the lack of a comprehensive fire database for the area. 

The study only compared pre- and post-burn imagery, but a long-term analysis would 

allow for more insight into average NDVI and NDMI values for the vegetation. 

Comparing long-term average NDVI and NDMI values coincident with fire events could 

lead to a better understanding between these indices and wildfire. The subjective 

weightings of the formula were also a limitation because they only reflected general 

values of how different factors influence fire hazard; a formula specifically developed for 

the Fynbos vegetation and the Cape Town context would allow a better analysis. For 

example, the findings reported here suggested that elevation should be weighed more 

heavily because those values determine occurrence of the vegetation. The final limitation 

was the lack of a comprehensive fire database. Detailed records including date, weather, 

and vegetation type and area burned would help establish a better understanding of the 

fire cycle in the area and relationships to the variables tested here. 

It is important to note that the model only aims to identify risk of fire hazard 

affecting an area and not actual fire behavior, which could be affected by other real-time 

factors such as weather and human factors (e.g., arson or fire fighters). Ultimately, 

improvements of the model could allow forest fire managers and emergency responders 

to initiate preventative policies and actions that could limit future fire damages to humans 

and nature.  
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