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Abstract 
 

The indeterminacy problem describes the challenge that infants face in deciding which 

words refer to which objects in their environment. Bayesian models use probabilistic 

inferences to resolve this induction problem and show improved performance over other 

computational models in constructing potential lexicons and inferring speakers’ 

referential intentions. In this study we investigate a Bayesian model’s ability to learn in 

more complex situations, first with more objects than in previous research and then in a 

bilingual scenario where more than one word refers to the same object. We found that the 

model’s absolute and relative performance was attenuated with increased complexity. 

 

Introduction 

  

Communication through language, even between two native speakers, can often be 

difficult and opaque. In an attempt to illustrate this notion, Wittgenstein says this, 

“Language disguises thought. So much so, that from the outward form of the clothing it is 

impossible to infer the form of the thought beneath it” (1922, pg. 22). For an infant with 

no prior access to language or understanding of social behavior, determining the 

intentions of speakers and the words that correspond to those intentions is doubly 

difficult. In his famous formulation of the problem, Quine (1960) imagines being with a 

foreign language speaker who points and says gavagai upon coming across a rabbit. 

Quine’s indeterminacy problem, faced by infant word learners, is the problem of figuring 

out just what gavagai refers to – the rabbit itself, the rabbit’s tail or ear, the whiteness of 

its fur, or perhaps mammals or animals in general. Of these infinite possible referents, 

what strategies does a word learner make use of to pick out the right one? The challenge 

of word-to-world mapping becomes more difficult when one considers the small 

proportion of words an infant hears that actually refer to objects in his or her immediate 

surroundings, and how irregularly those few words co-occur with those objects (Yu, 

2008). With so much information to extract structure from, both Quine and Yu point out 

that an infant’s learning system must be advantageously constrained in some way. 
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Constraints in Monolingual Word Learning 

 

Despite controversies that surrounds their origins and the degree to which they are 

actually used, researchers for the most part agree on the need to posit a number of 

important assumptions that help word learners constrain a potentially infinite problem 

space (Markman, 1994).  The whole object constraint assumes that words refer to whole 

objects instead of parts of objects. The taxonomic constraint assumes that novel words 

might be generalizable to objects that are similar to each other. The mutual exclusivity 

constraint assumes that each object has only one label (Markman, 1994). A number of 

similar constraints have also been posited, such as the contrast constraint (Clark, 1993) 

and the novel-name nameless-category constraint,(Golinkoff, Hirsh-Pasek, Bailey, & 

Wenger, 1992) but these constraints explore different motivations yielding mutual 

exclusivity, i.e. that novel words refer to novel objects (Yu, 2008; Byers-Heinlein & 

Werker, 2009).  

 There is strong behavioral evidence to suggest that monolinguals make heavy use 

of the mutual exclusivity constraint when deciding upon the referents of words, with the 

constraint developing over time through its communicative function (Davidson & Tell, 

2005). The mutual exclusivity constraint appears to be available to infant word learners 

from at least 16 months of age (Liittschwager & Markman, 1994). It is important to note, 

though, that mutual exclusivity is by no means an absolute condition for word-object 

mapping. Yurovsky and Yu (2008) have demonstrated adult violations of mutual 

exclusivity in mapping a label to two distinct objects (a case of homonymy) across 

situations, though the constraint was used to pick an object out among co-occurring 

referents within individual trials. Liittschwager and Markman (1994) characterize mutual 

exclusivity as a ‘default assumption’, showing that difficulties in learning a second label 

for familiar objects (i.e., synonymy) disappear with enough evidence and processing 

capacity. They concluded that “mutual exclusivity works as a probabilistic bias and not as 

an absolute constraint” (pg. 957). 
 Parents direct somewhere between 300 to 400 utterances an hour on average to 

their children (Hart & Risley, 1995). With exposure to so many words over such a small 

time span, an intractable level of ambiguity about intended referents is likely to persist, 

even with the help of a number of social, linguistic, and conceptual constraints (Smith & 

Yu, 2008). As a means of helping to resolve this issue, Aslin and Newport (2012) point 

out that children are highly proficient at extracting organizational structure from 

ambiguous data from mere observation. The process by which children extract this 

information about distributions in the input is referred to as statistical learning (Aslin & 

Newport, 2012; Saffran, Aslin, & Newport, 1996). Although their probabilistic reasoning 

based on this information differs from that of adults (likely due to cognitive limitations), 

children will naturally sample these distributional properties even without the 

presentation of a specific task (David, Newport, & Aslin, 2009). 
 

Computational Models 
  

In the effort to understand the problems that word learners face and the statistical 

mechanisms by which these problems may be solved, computational models have 
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provided the ability to systematically control and manipulate relevant variables, flexibly 

test a range of hypotheses, and for many problems change from slow and descriptive to 

experimental methods (Zinszer & Li, 2010; Li & Zhao, 2012a). Whether or not these 

models accurately depict the processes of the cognitive system, they allow us to 

understand the goals and constraints faced by the system and to compare human 

performance to the models’ optimized reasoning (Perfors, Tenenbaum, Griffiths, & Xu, 

2011). Furthermore, models allow researchers to better understand the implications of 

their ideas, assumptions, and simplifications and thereby elaborate the phenomena under 

investigation to develop further questions for behavioral and neurological research. 

Computational models thus have a reciprocal relationship with empirical research, being 

informed by earlier findings and data and informing later studies (Li & Zhao, 2012a). 

 Existing models of word learning can generally be delineated into two classes: 

hypothesis elimination models and associative models (Xu & Tenenbaum, 2007a). 

Hypothesis elimination models generate a number of hypotheses, completely eliminating 

through deductive inference those that do not fit the observed data. Siskind (1996) 

developed an especially in-depth treatment of models of this type, presenting a formal 

algorithm for keeping track of only those hypotheses that provide valid potential 

solutions. The second class, the associative models, learn words by tracking co-

occurrence or similarity statistics across situations. These co-occurrences can either be 

between words and objects in the environment (Roy & Pentland, 2002) or between a 

word and the other words in the surrounding linguistic input (Li, Burgess, & Lund, 2000). 

One important and broadly-applied family of associative models are connectionist 

networks, which map words to objects (local representations) or a group of perceptual 

features (distributed representations) through a form of gradient descent (Elman, 1996; 

Seidenberg, 1989; Li, 2009; see Li and Zhao 2012b for review). Among other domains, 

connectionist models have successfully simulated several phenomena of bilingual word 

learning, reviewed below. 
 As a means of evaluation, Xu & Tenenbaum (2007a) introduce five core word-

learning phenomena that must be replicated by any valid computational model: (1) 

learning inductively from very few examples, (2) learning from only positive examples, 

i.e., they are never told what words do not refer to, (3) learning a system of overlapping 

concepts, (4) learning word meanings in a graded fashion, with varying degrees of 

confidence depending on the number and quality of examples available, and (5) learning 

based on intentional reasoning and how the examples are being generated. Xu and 

Tenenbaum go on to evaluate each class of models for each of these criteria, concluding 

that neither is capable of succeeding in all five areas. The use of connectionist models has 

also been critiqued because of the opacity of the networks’ solutions; more generally, 

researchers have questioned the wisdom of bottom-up approaches such as these when so 

little is known about the degree to which they accurately model the physiological 

mechanisms of the brain (Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010). 
 

Bayesian Models 
  

Frank, Goodman, & Tenenbaum (2009) introduce another distinction between social 

intentional theories which emphasize a rich understanding of speakers’ intentions to learn 
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words, and cross-situational approaches, the foundational underpinning of most 

computational models, which depend largely on co-occurrence, viewing speakers’ 

intentions as ambiguous noise to be canceled out through multiple observations. In order 

to bridge the gap between these two theoretical approaches, Frank et al. (2009) propose 

that the learning of words and intentions be combined into a single joint-inference 

problem, to be solved with a new class of Bayesian inference models. Models of this type 

have been shown to be capable of accounting for all five of the core word learning 

phenomena (Xu & Tenenbaum, 2007a) and in comparison tests have been shown to 

outperform a number of models belonging to the other two classes in developing a 

lexicon and figuring out speakers’ intentions (Frank et al., 2009). The same study also 

demonstrated this model's capability to display a number of behaviorally realistic 

learning phenomena, such as graded mutual exclusivity and fast mapping, or learning an 

object-label association from a single observational trial. 
 Bayesian models are similar in principle to hypothesis elimination models, except 

that they evaluate hypotheses probabilistically. All hypotheses are considered, with each 

being assigned a posterior probability, indicating the model’s degree of belief in that 

specific hypothesis (Perfors et al., 2011). Instead of eliminating any hypotheses, the 

model assigns smaller and smaller probabilities to the more unlikely hypotheses. 

Posterior probabilities across all hypotheses must sum to one, in accordance with the 

principle of conservation of rational belief (Xu & Tenenbaum, 2007a; Perfors et al., 

2011), requiring that more confidence in one hypothesis is balanced by a lower degree of 

confidence in others. 
 The posterior probability p(Hi|D) of a hypothesis Hi given data D, can be 

calculated according to Bayes’ Rule:  

 

𝑝(𝐻𝑖|𝐷) =
𝑝(𝐷|𝐻𝑖)𝑝(𝐻𝑖)

∑ 𝑝(𝐷|𝐻𝑗)𝑝(𝐻𝑗)𝑗

 

 

Here p(D|Hi) is known as the likelihood probability, while p(Hi) is known as the prior 

probability. The likelihood probability captures how much one would expect to observe 

the data D if Hi were true, while the prior captures how likely hypothesis Hi is before 

observing any data at all. The hypothesis space from which the hypotheses and their 

associated prior probabilities are drawn from is structured in accordance with the 

modelers’ assumptions about the word learning principles and constraints available to the 

model (Xu & Tenenbaum 2007a). For example, hypotheses with smaller lexicons or 

lexicons that do not give two labels to the same object in accordance with the mutual 

exclusivity constraint may be allotted a higher prior probability. The product of the 

likelihood and prior expresses a trade-off between how well the hypothesis, in our case a 

lexicon, fits the observed data on the one hand and how inherently complex the lexicon is 

on the other (Perfors et al., 2010). The better the fit and the simpler the hypothesis, the 

higher the probability that it is the right one. The denominator in the above expression 

normalizes the term, ensuring that the probabilities sum to one. While this expression 

represents an evaluation of the hypotheses, how they are generated from a possibly 

infinite hypothesis space is another model-dependent question to be addressed below. 
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 Of great importance in Bayesian inference are the related notions of the size 

principle and suspicious coincidence. The size principle dictates that smaller hypotheses 

assign greater likelihood probabilities than do larger hypotheses, and this difference 

becomes exponentially large as the data set upon which the hypotheses are based 

increases (Xu & Tenenbaum, 2007a). This is more clearly expressed through the intuitive 

notion of suspicious coincidence, whereby the model is sensitive to the way data are 

being generated, assuming for the most part that the objects to be labeled are random, 

representative samples of referents for that word. As a result of this assumption, the 

smallest hypothesis that fits the data becomes the most attractive. For example, after the 

native in Quine’s (1960) example points to the rabbit and says gavagai, the word learner 

will probably assume it refers to the rabbit and not to all animals or living things, but his 

or her level of certainty in that assumption would be rather low. After coming across two 

more rabbits and hearing the same label while other animals do not receive that name, the 

word learner should become more certain of the correspondence between gavagai and 

rabbits. If the word did truly refer to all animals, it would be a suspicious coincidence that 

of all the animals that could have been randomly selected and presented in association 

with gavagai, all three would be rabbits. This type of graded generalization is 

characteristic of human word learners, providing a partial solution to the problem of no 

negative evidence (Perfors et al., 2011), and is an important feature of Bayesian models 

that distinguishes them from previous model classes (Xu & Tenenbaum, 2007b). 
 

Behavioral Evidence for Bayesian Models 
  

Bonawitz & Griffiths (2010) indicate that current research proposes that inductive 

problem solving of the type found in word learning is Bayesian in character. Xu & 

Tenenbaum (2007a) presented 3-4 year old children with either one or three similar 

objects and a single associated label, asking them to either pick out other objects that 

would also be named by that label or to judge whether a newly presented object would fit 

with that label. They found in both cases that in the three-object trial the children tended 

to generalize the name to refer to less similar objects significantly less often than in the 

one-object trial, indicating that the children were reasoning with the notion of suspicious 

coincidence in mind and narrowing in on the most specific valid hypothesis given more 

data. That is, children shown only one instance of a ‘dog’ may be willing to generalize 

the word to a cat or bear, but after observing three examples of a ‘dog’ children would 

tend to associate the word ‘dog’ with more specifically dog-like qualities and expect cats 

and bears to have a different label. Xu & Tenenbaum (2007b) further demonstrated the 

Bayesian nature of word learning by finding that four year olds only changed their 

generalizations according to suspicious coincidence in this way when they had reason to 

believe the sampling of objects was representative of the entire space of referents for a 

label, i.e., chosen by a “teacher” (strong sampling) instead of picked out by some other 

accidental, less representative process, i.e., chosen based on similarity to previously 

labeled referents (weak sampling), indicating a sensitivity to the data generation process. 
 A number of studies have also shown the cognitive plausibility of models of this 

type. Adults and 12-14 month old children have been shown capable of tracking co-

occurrence statistics over a number of ambiguous trials of multiple-word to multiple-
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object pairings to systematically learn an entire lexicon of word-referent mappings (Yu & 

Smith, 2007; Smith & Yu, 2008). These results are partly explained by a demonstrable 

ability, at least in adults, to use partial knowledge from preceding situations to not only 

better learn labels for previously presented objects, but also to constrain the name 

possibilities of novel objects to support the systematic learning of an entire lexicon 

(Yurovsky, Fricker, Yu, & Smith, 2010). The systematic nature of lexicon learning is 

represented in the model considered in this paper by its comparative evaluation of whole 

lexicons instead of single word-object mapping entries in the lexicon. Vouloumanos 

(2008) established the plausibility of keeping track of and considering the probability of a 

number of candidate word-referent mappings with a high degree of exactness, even when 

those mappings were extremely unlikely. A graded version of constraints such as mutual 

exclusivity is therefore more likely to represent human word learning than the strictly 

discrete all-or-nothing constraints reflected in previous hypothesis generation models.  
 

Bilingual Word Learning 
  

While models of monolingual word learning abound, less work has been done to model 

bilingual word learning (Li & Zhao, 2012a), a process which fosters the development of a 

different set of word learning skills, constraints, strategies, and expectations (Merriman & 

Kutlesic, 1993; Bialystok, Barac, Blaye, Poulin-Dubois, 2010). Davidson and Tell (2005) 

explain that use of the mutual exclusivity constraint might be problematic for bilinguals 

who, if adhering to this assumption, would be hesitant to assign another name to an 

object previously labeled in another language, though this would be necessary to properly 

learn two languages. They found that bilingual children are much less likely to depend on 

the mutual exclusivity constraint than monolinguals, who make use of it in nearly all 

cases, particularly as they get older. Byers-Heinlein and Werker (2009) suggest that the 

acquisition of translation equivalents for bilinguals and trilinguals precedes the 

development of mutual exclusivity, and that the number of these equivalents in a lexicon 

is likely related to the degree to which mutual exclusivity is obeyed.  Au and Glusman 

(1990) demonstrated, though, that both monolingual and bilingual five year olds readily 

accepted two labels for an object when the names explicitly came from different 

languages, indicative of a sensitivity to sampling and a graded sense of mutual 

exclusivity (Xu & Tennenbaum, 2007b). While there is research to show an early 

language differentiation in pragmatic abilities and in the organization of the lexicon 

(Paradis, 2001), it remains to be seen how early and through what means monolingual 

and bilingual infants are able to distinguish the language origin of different words, and 

when and to what degree this knowledge facilitates bilingual word learning (Byers-

Heinlein and Werker, 2009; Perfors, 2001). The model discussed in this paper therefore 

makes no assumptions regarding the infant word learner’s linguistic meta-knowledge 

(although such knowledge could be highly important in guiding bilingual learning). 
 Research has also shown that while the course and rate of language development 

for monolingual and bilingual children are similar, the lexicon of bilingual children in 

each language is smaller than that of a comparable monolingual (Bialystok et. al, 2010), 

though the bilingual may know the same or more words when both languages are taken 

into account (Byers-Heinlein and Werker, 2009). This may be due to the division of the 
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bilingual’s experience between two languages or due to a difference in the process of 

vocabulary learning (Bialystok et. al, 2010). 
 

Models of Bilingual Word Learning 
  

While some bilingual models of language acquisition and word learning do exist, these 

models typically have connectionist architectures and tend to be more concerned with the 

representational differences between monolinguals and bilinguals instead of the different 

constraints and trajectories of the word learning process (see Li & Zhao, 2012a for a brief 

review). Zhao and Li (2007) and Li (2009), for example, used a temporally dynamic 

approach to show inter- and intra-language competition effects in a self-organizing 

connectionist network and the consequences these effects, along with a number of word 

learner variables such as age of onset, have on a bilingual’s lexical representation. Other 

self-organizing connectionist network models have given accounts of individual 

differences due to working memory and proficiency, priming and interference effects (Li 

& Farkas, 2002), critical development periods (Richardson & Thomas, 2008), and 

taxonomic responding and fast mapping in early word learning (Mayor & Plunket, 2010). 

Aside from the criticisms of connectionist models discussed earlier, Yu (2008) observes 

that many simulation studies of this type base themselves on artificial data that 

presuppose word-object pairings, failing to address the inductive mapping problem we 

are presently considering. Byers-Heinlein and Werker (2009) further note that no 

computational account has yet addressed mutual exclusivity in the multilingual situation. 
 

Current study 
 

To our knowledge, no studies have yet assessed the capability of Bayesian models to give 

a faithful depiction of the bilingual word learning process, one which is clearly different 

from and more complex than the monolingual case. As a first step, in this study we adapt 

existing computational models of monolingual language processing to the bilingual 

situation (Brysbaert, Verreyt, & Duyck, 2010), and, specifically, extend the findings of 

Frank et al.’s (2009) Bayesian intentional model, which is clearly documented and has 

been shown to be more effective at choosing lexicons than previous model classes. We 

further apply the model to a bilingual data set to assess the extent to which it is able to 

perform in this more complex case. Finally, we discuss the assumptions of the model 

which result in its varied performance in monolingual and bilingual contexts of varying 

complexity.  
 

Methods 

 
 In the present study, we consider the model presented by Frank and colleagues 

(2009) under a new set of stimuli. In the first experiment, we modestly increase the 

complexity of the model's input, drawing parent-child interactions from those used by 

Fernald and Morikawa (1993), similar to the Rollins section of the Child Language Data 

Exchange System (CHILDES) used by Frank et al. (2009) (MacWhinney 2000). Using 

the same criteria employed in the original study, we evaluate the model's performance 
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and compare it to previous findings. In the second experiment, we introduce a second 

language by translating approximately 50% of the training material from Experiment 1 

into Spanish. Again, we evaluate the model's performance on this new task and compare 

it with previous results. 
 While the original study and its corresponding supplementary material should be 

consulted for specifics of the model’s design and implementation, we note a number of 

assumptions that are made for the sake of clarity. A further treatment of some of these 

assumptions is provided in the Discussion section, as they apply to the results of our 

simulations. 
 

Model Assumptions 
  

In order to map words to objects, we must first assume that the model is already capable 

of (1) parsing speech and (2) distinguishing objects in the first place. A number of 

behavioral results indicate that by 17 months of age, most typically developing children 

accomplish both of these feats, marking the approximate onset of the so-called 

vocabulary spurt. In a seminal paper on statistical learning, Saffran, Aslin, & Newport 

(1996) showed that eight month olds were able to parse and group three-syllable strings 

through an experience independent mechanism after only two minutes of exposure to an 

artificial language. The infants were able to do this by estimating and tracking the 

conditional or transitional probabilities of one syllable following another, parsing 

between low probability pairs (Swingley, 2009; Aslin & Newport, 2012). Extending these 

findings beyond artificial language, Hay, Pelucchi, Estes, & Saffran (2011) went on to 

show that 17 month olds were able to track bidirectional transitional probability statistics 

from two minutes of exposure to an unfamiliar natural language (i.e., Italian) to parse 

words and then later treat them as labels for novel objects. Infants have also been 

observed to discriminate familiar and novel sequences of shapes by two months (Kirkam, 

Slemmer, & Johnson, 2002). 
 Rosch et al. (1976) distinguish many levels of abstraction along the hierarchical 

object taxonomy, including, from low to high-level, subordinate, basic, and superordinate 

(e.g., “Tigger”, cat, animal). Through a series of experiments, Rosch et al. show that 

basic objects share the largest number of common attributes, are the earliest categories 

perceived, sorted, and named by children, and are the most necessary and commonly used 

in language. Markman and Wachtel (1998) point out that basic level categories are 

commonly mutually exclusive, and that their use as a primary means of learning word-to-

world mappings reasonably fits an assumption of mutual exclusivity. Generalization 

tendencies and a preference for the basic level are further explored by Xu & Tenenbaum 

(2007a), and in this model we assume that only basic objects are being considered by the 

word learner (Frank et al., 2009). 
 Lastly, it should be noted that while there are many possible considerations of 

word “meaning”, including lexical co-occurrence (Li et al., 2000) and a more intensional 

account through groupings of distributed perceptual features (Li et al., 2007; Li 2009), 

“meaning” is here assumed to be extensional, i.e., the scope of the referents a label picks 

out (Xu & Tenenbaum, 2007a; Frank et al., 2009). 
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Levels of analysis 
  

It is important to keep in mind that Bayesian models describe the strategies or approaches 

which may be applied when encountering new information, rather than making claims or 

commitments about the psychological or physiological mechanisms by which people 

actually learn and reason (Bonawitz & Griffiths, 2010; Bonwitz & Griffiths, 2010; Frank 

et al., 2009; Griffiths et al., 2010; McClelland, 2009; Xu & Tenenbaum, 2007a). Clark 

(1989) maintains that “explanation is…a matter of depicting the structure at the right 

level. And the right level here is determined by the need to capture generalizations about 

the phenomena picked out by the science in question” (pg. 181). Marr’s (1982) Tri-Level 

Hypothesis classifies all information processing systems (the cognitive system included) 

into three levels of analysis: (1) computational, (2) algorithmic, and (3) implementational 

or physical. Computational analysis involves understanding the system’s problems, goals, 

and motivations. Algorithmic analysis involves understanding the representations the 

system uses to solve those problems and how it goes about building and manipulating 

those representations. Implementational analysis involves understanding how the 

system’s hardware functions, manifested as neurophysiological research in the cognitive 

case. Typically, Bayesian models of word learning should be taken as computational 

level models, or program explanations in the words of Jackson and Pettit(1988) and Clark 

(1989), that show what problems face the word learner and outlining the common 

features of general strategies for overcoming them (Xu & Tenenbaum, 2007a; Griffiths et 

al., 2010).  
 

Model Design 
 

As in Frank et. al (2009),  the intentional model’s parameters dictating the probability 

that  words are used referentially and the probability of using words in the lexicon 

referentially are set to the maximum a posteriori values (the joint empirical Bayes 

estimate) to reduce the number of free parameters to one (the same number as the 

comparison models). After training, the model is scored both on the accuracy of its 

lexicon and on the accuracy of the inferences it makes about speakers’ referential 

intentions. These scores are measured relative to a gold-standard lexicon and intention set 

generated by a human coder. The gold-standard lexicon included every noun (including 

plurals and baby talk, excluding pronouns) used to refer to an object at least once in the 

data. The gold-standard intents were based on Fernald & Morikawa’s (1993) best guess 

as to the speakers’ referents. The measures of accuracy used were precision (proportion 

of mappings made that were correct), recall (proportion of the total correct mappings that 

were found), and F score (the harmonic mean of precision and recall, commonly used as 

a standard measure of a model’s degree of accuracy).  
 The model is compared against five other cross-situational word learning models 

to gauge its relative success, the first three of which are calculations of co-occurrence 

frequency, conditional probability, and point-wise mutual information. We also compared 

the Bayesian inference model to IBM Machine Translation Model I (Brown, Pietra, 

Pietra, & Mercer, 1994), computing association probabilities both for objects given words 

and words given objects. After a word-by-object matrix of association values was 
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attained for each model, a number of lexicons were created by considering a number of 

threshold values and only including word-object pairs with an association value higher 

than the threshold. The lexicon resulting from the threshold value that yielded the highest 

posterior score was kept for each model. The comparison models’ intentional inferences 

for each situation were taken to be the objects for which a corresponding word in each 

model’s best lexicon was uttered. 
 Each of the model’s potential lexicons is scored based on its posterior probability, 

p(L|C) ∝ p(L) × p(C|L), found by calculating the product of the prior and likelihood 

probabilities. The prior probability is calculated according to a parsimony assumption, 

awarding each lexicon Li a score inversely proportional to its size: 
 

𝑝(𝐿𝑖) ∝ 𝑒−𝛼|𝐿𝑖| 
 
The likelihood function, which calculates the probability p(C|Li) of observing the corpus 

of situations given a lexicon, is based on a number of interdependencies and assumptions. 

For the objects Os , intentions Is, and words Ws in each situation S, we assume that Is is a 

subset of Os, and that every subset is equally likely to be intentionally referred to, i.e., 

𝑝(𝐼𝑠|𝑂𝑠) ∝ 1. We further assume that given Is, a speaker’s utterance Ws depends upon 

both Is and the lexicon L. We also assume that speakers have a certain probability γ of 

using a word referentially in any given context. We finally consider two distinct 

probabilities: firstly, the probability pR(w|o,Li) of choosing a word w∈ Ws uniformly at 

random from the set of valid labels to refer to a given object o∈ Os with lexicon Li, and 

secondly, the probability pNR(w|Li) of choosing a word to be used non-referentially. A 

parameter κ dictates how likely words in the lexicon are to be used non-referentially 

relative to words outside the lexicon (i.e., because we choose κ < 1, words in the lexicon 

are less likely to be used non-referentially). As our final likelihood probability we get: 

 

𝑝(𝐶|𝐿𝑖) =  ∏ ∑ ∏ [𝛾 ∙ ∑
1

|𝐼𝑠|
 𝑝𝑅(𝑤|𝑜, 𝐿𝑖

𝑜∈𝐼𝑠

) + (1 − 𝛾) ∙ 𝑝𝑁𝑅(𝑤|𝐿𝑖)]

𝑤∈𝑊𝑠𝐼𝑠⊆𝑂𝑠𝑆∈𝐶

 

  

 Hypotheses for potential lexicons are generated stochastically: new lexicons are 

always chosen over old lexicons if they yield a greater posterior score, but are chosen 

with a probability equal to the ratio of the lexicon’s scores otherwise. New lexicons are 

generated by adding a word-object pairing, deleting a pairing, or swapping two pairings 

according to a data-driven Markov-Chain Monte Carlo strategy. Because of the 

irregularity of the posterior score distribution, incremental moves in the right direction 

may actually temporarily yield severely worse posterior scores. The lexicon space is 

therefore searched stochastically via a Monte Carlo strategy known as simulated 

tempering whereby a number of searches with differing degrees of greediness are run in 

parallel. The model’s search and scoring process typically converges to its final posterior 

value within 10k-50k moves. 
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Simulation 1 

In the first simulation we extend the monolingual Bayesian word-learning simulation of 

Frank et al. (2009), using a new data set from similarly annotated transcriptions (Fernald 

& Morikawa, 1993) of English-speaking mothers interacting with their infants. This data 

set is compiled to provide a corpus comparable in size and complexity to the corpus used 

by Frank et al. (2009), see Table 1 for comparison. 

 
Table 1 
Size and Complexity Comparisons Between Past and Current Datasets 

 Frank et al. 
(2009) 

Current 
Monolingual Study 

Current 
Bilingual Study 

Size  
Object types 22 22 22 
Word types 419 321 486* 
Object tokens 1261 1671 1671 
Word tokens 2507 2106 2019 
Total situations 619 571 571 
Complexity  
Average words per 
situation 

4.0501 3.6883 3.5359 

Average objects per 
situation 

2.0372 2.9264* 2.9264* 

Average words per 
object per situation 

2.5987 1.5252* 1.4492* 

Note. * indicates a significant difference from previous studies. In this case the presence 

of approximately one more object per situation on average produces a slightly more 

complex set of situations, predicting decreased performance. 

 
Simulation 2 
  

In the second simulation, the same model is trained on bilingual input. Approximately 

50% of the utterances from the monolingual corpus were translated into Spanish, with 

transparency (i.e., the translation’s Spanish nativeness) being chosen over fidelity (i.e., 

the extent to which the translation accurately renders the meaning of the English) 

whenever possible. Besides language differences, the bilingual corpus is similar in size 

and complexity to the corpus in Simulation 1, as can be seen in Table 1. The only 

significant difference between the corpora is the significantly larger (51%) number of 

word types in Experiment 2, a result that is expected from the use of two languages and 

by extension the common use of two words to designate the same concept. After training, 

the same accuracy ratings used in Simulation 1 are re-applied in Simulation 2. 
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Results 

 

Simulation 1 

 
The Bayesian intentional model was run 20 times, and its precision, recall, and F score 

were recorded after each run. After averaging these scores across all the runs, the results 

indicated that the model outperformed the comparison models in building a lexicon from 

the child-directed speech situations. As can be seen in Table 2, the intentional model had 

the highest precision value, .40, and the highest F score value, .35. Unlike the results in 

Frank et al. (2009), the intentional model did not have the highest recall score in our 

simulations; rather, the conditional probability model had the highest recall score at .59 

as compared to the intentional model at .31. 

 
 Table 2 

 Precision, Recall, and F Score of the best lexicon found by each model 
Model Precision Recall F score 

Association frequency .04 .31 .07 
Conditional probability (object|word) .04 .59 .07 
Conditional probability (word|object) .29 .13 .17 
Mutual information .22 .34 .27 
Translation model  (object|word) .15 .31 .20 
Translation model (word|object) .24 .38 .29 
Intentional model .40 .31 .35 

             Note. The highest values obtained are highlighted in boldface. 
 

 In contrast to findings in Frank et. al (2009), the model had no advantage in 

inferring speakers’ intentions (Table 3), and did not have the highest value for any of the 

scores. The best precision was obtained by the mutual information model with a value of 

.56 (as compared to the intentional model’s .26) and the best F score was obtained by the 

translation model with a value of .42 (as compared to the intentional model’s .31). As in 

the previous study, the association frequency model obtained the highest recall value for 

the intentional inferences by a wide margin with a value of .75 (as compared to the 

intentional model’s .39). 
 

Table 3  
Precision, Recall, and F Score of the inferences made by each model 
about the speaker’s referential intentions, using the lexicons scored in Table 2 

Model Precision Recall F score 
Association frequency .14 .75 .24 
Conditional probability (object|word) .16 .61 .25 
Conditional probability (word|object) .50 .21 .30 
Mutual information .56 .18 .27 
Translation model  (object|word) .55 .34 .42 
Translation model (word|object) .33 .51 .40 
Intentional model .26 .39 .31 
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 Note. The highest values obtained are highlighted in boldface. 
 

Table 4 displays the best lexicon found by the intentional model, which was 

considerably smaller than the best lexicons found by all but one other model (the 

translation model calculating the conditional probability of a word given an object was 

the only model to posit a smaller lexicon with size 14). Of the 26 lexical pairings posited 

by the intentional model, 13 were judged to be correct according to the gold standard. 

The remaining comparison models posited lexicons with sizes ranging from 50 to 500. 
 
Table 4 
Best Lexicon Found by Bayesian Intentional Model in Monolingual Simulations 

Word Object Word Object 
hair brush you face 

flashlight flashlight waffles waffles 
dough dough under pepperoni 
doors car the face 
doggy dog the dog 
cheese cheese the hotdog 
brush box ruff pig 
brush brush rosy doll 
blocks blocks red truck 
bear bear rabbit rabbit 
bang brush leg pepperoni 
baby baby joey book 

alphabet alphabet hotdog hotdog 
Note. Word-object pairs judged to be correct according to the gold standard are 

highlighted in boldface. 
 
 

Simulation 2 

 
In Simulation 2, the Bayesian intentional model, while still performing highly 

competitively in determining a lexicon given bilingual speech situations (Table 5) only 

outperformed the comparison models in terms of precision with a value of .35. The 

association frequency model obtained the highest recall score with a value of .50 (as 

compared to the intentional model’s .19) while the mutual information obtained the best 

F score with a value of .25 (fractionally beating out the intentional model’s score). As 

expected, the model’s best English and Spanish sub-lexicons, scored relative to the 

appropriate subset of the bilingual gold-standard, performed more poorly than the 

aggregate bilingual lexicon and more poorly than the monolingual lexicon. 
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Table 5  
Precision, Recall, and F Score of the best lexicon found by each model in a 

bilingual scenario 
Model Precision Recall F score 

Association frequency .04 .50 .07 
Conditional probability (object|word) .04 .26 .07 
Conditional probability (word|object) .12 .17 .14 
Mutual information .22 .30 .25 
Translation model  (object|word) .12 .26 .17 
Translation model (word|object) .15 .39 .22 
Intentional model .35 .19 .25 
Intentional model (English only) .21 .17 .19 
Intentional model (Spanish only) .25 .21 .23 

Note. The highest values obtained are highlighted in boldface (differences 

between values may not be apparent because of rounding). 
 

The model also performed rather poorly, both absolutely and relatively, in inferring the 

referential intentions of speakers (Table 6). For none of the three scoring metrics did the 

intentional model obtain the highest value. The best precision was, as in Study 1, 

obtained by the mutual information matrix with a value of .58 (as compared to the 

intentional model’s .23) and the best F score was again obtained by one of the translation 

models with a value of .40 (as compared to the intentional model’s .24). The association 

frequency model, as in Study 1 and in Frank et al. (2009), had the best recall score with a 

value of .82 (as compared to the intentional model’s .25). 

 
Table 6  
Precision, Recall, and F Score of the inferences made by each model 
about the speaker’s referential intentions, using the lexicons scored in Table 5 

Model Precision Recall F score 
Association frequency .15 .82 .25 
Conditional probability (object|word) .13 .27 .18 
Conditional probability (word|object) .43 .31 .36 
Mutual information .58 .17 .26 
Translation model  (object|word) .48 .27 .34 
Translation model (word|object) .34 .49 .40 
Intentional model .23 .25 .24 

Note. The highest values obtained are highlighted in boldface. 
 
 

Table 7 displays the best bilingual lexicon found by the intentional model. The 

intentional model posited the smallest lexicon, again of size 26, with a total of 10 correct 

pairings. The comparison models posited lexicons with significantly more word-object 

pairings, ranging from 60 up to 600. 
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Table 7 
Best Lexicon Found by Bayesian Intentional Model in Bilingual Simulations 

Word Object Word Object 
you face hotdog hotdog 
you box guau dog 
wha flashlight grande bear 
the face gofres waffles 
the dog doggy dog 
the hotdog cheese pepperoni 
ruff pig cepilla box 
rosy doll car car 

queso cheese brush brush 
over rabbit bloques blocks 
oh face bebe baby 

maza dough bang box 
joey book a face 

Note. Word-object pairs judged to be correct according to the gold standard are 

highlighted in boldface. 
 

Discussion 

 
The use of a new monolingual English dataset yielded surprisingly different results from 

those obtained in Frank et al. (2009). While a number of the corpora’s size metrics are 

similar, the smaller word token count combined with the larger object token count 

introduced additional ambiguity about the intended referents of each word in a situation, 

as compared to previous simulations. This increased complexity may have allowed the 

formation of spurious word-object pairs, as positive examples were less certain under the 

increased noise in the input. Consistent with previous results, the best lexicon found by 

the Bayesian model was still significantly smaller than those generated by the comparison 

models, owing to the bias of the prior likelihood toward parsimony. However, Table 7 

reveals that, unlike the best lexicon from Frank et. al (2009), the best lexicon found in the 

present study contained a large number of spurious lexical items (e.g., the high frequency 

word ‘the’ was paired with the object ‘dog’, and the high frequency object ‘face’ was 

paired with the word ‘you’ ) despite the model’s distinction between referential and 

nonreferential words and its bias to expect the latter. As one might expect from the low 

precision of the lexicon, the Bayesian model’s intentional inferences based on the lexicon 

decreased in performance as well. Because bilingual infants have a number of other tools 

when discerning word meanings in realistic word learning situations (e.g., phonological, 

prosodic, lexical co-occurrence knowledge), in future studies we will identify the impact 

of removing words with obvious referents (e.g., ‘you’) or obvious non-referents (e.g., 

‘the’) from the corpus, as children would most likely already have ruled these words out 

of the lexicon by other means.  
 In the next simulation, we assessed how a similarly complex but bilingual 

scenario affected the model’s performance in building lexicons and inferring intentions 

when all else is held constant. 
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 Besides a few exceptional cases, the bilingual data set yielded poorer performance 

than the monolingual data set for all models, and in most measures the Bayesian model 

was out-performed by the competing models. The best lexicon derived by the Bayesian 

model in this simulation contained even more obviously spurious lexical items than that 

of the previous simulation. Interestingly, both lexicons also contained several many-to-

one word-object pairs along with a number of one-to-many (and in some cases many-to-

many) word-object pairs. While any one-to-many word-object pairing is necessarily 

incorrect, as no two objects in the dataset have the same name, many-to-one pairs are of 

interest in assessing the degree to which the mutual exclusivity constraint is adhered to by 

the model. 
 As opposed to the results of Frank et. al (2009), in no case did the lexicons in 

either of these studies make a many-word-to-single-object pairing that was correct. While 

this may have been expected in the monolingual case where word learners have been 

found to rely heavily on the mutual exclusivity constraint (though the appearance of 

incorrect many-to-one pairings challenges this hypothesis), the lack of correct many-to-

one pairings in the bilingual case, where the data was intended to catalyze this very type 

of violation, is highly problematic. The presence of these pairings in Frank et al. (2009) 

suggests, however, that the absence of these pairings in the current studies may be linked 

more to the roots of the drastic performance differences between Simulation 1 and Frank 

et. al (2009) than differences between learning from monolingual and bilingual inputs. 
 An analysis of the precision, recall, and F scores obtained when we score the 

bilingual lexicon within-language reveals some psychologically realistic results. To score 

the bilingual’s solely English performance, for example, we removed the correct Spanish 

pairings made by the model from the lexicon and compared the remaining pairs (i.e., 

correct English pairings and any incorrect pairings) to the English subset of the gold-

standard lexicon. In accordance with the literature, the bilingual’s strictly English lexicon 

is smaller and less accurate than that of the monolingual English model (Bialystok et al., 

2010). As one would expect though, the number of correct word-object pairings learned 

by the monolingual model and aggregate bilingual model are roughly the same, 

indicating similar vocabulary development trajectories. 

 For the most part the comparison models seem to have outperformed the Bayesian 

model in these more complex situations because they are unconstrained by any 

assumption of parsimony, and as a result they may make better use of a weak signal-to-

noise ratio in the input. This advantage may decrease as the size of the corpus increases 

because the Bayesian model should improve in precision by excluding spurious non-

referential words while the comparison models cannot do this. 
 Overall these simulations reveal an extreme sensitivity on the part of all models, 

and the intentional model in particular, to small changes in the training data. In short, our 

simulations in this study indicate that while the monolingual model performed 

comparably to the Frank et al. (2009) study, the model’s absolute and relative 

performance was attenuated with increased complexity. While some work has here been 

done to define a principled way to track differences between transcriptions and datasets 

through comparisons of a number of size and complexity metrics, more must be done if 

model performance is to be reliably compared across corpora. While it appears that the 

Bayesian model displayed attenuated performance in the bilingual case, because of the 
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disparities between previous and current monolingual scores the degree and causes of this 

attenuation are questions for further research. 
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