Examining Neural Correlates of Metacognitive Deficits in Individuals Aging with Traumatic Brain Injury

Emily Grossner
Department of Psychology
Penn State University Graduate Exhibition
March 24-26, 2021
Traumatic Brain Injury (TBI)

• “Alteration in brain function, or other evidence of brain pathology, caused by an external force” (Menon et al., 2010)

• Involves pathophysiological, cognitive, and socioemotional changes (Bigler, 2001; Rabinowitz & Levin, 2014)

• Cognitive impairments are commonly persistent and chronic (Tang & Lobel, 2009)

• Cognitive outcomes are heterogeneous (Whitnall et al., 2006)
Aging and TBI

• Normal aging exacerbates neuropathological processes occurring following TBI (Moretti et al., 2012)

 • Weakened vasculature and white matter from aging --> more susceptible to injury (Gardner et al., 2018; Liu et al., 2017; Ikonomovic et al., 2017)

 • Increases the likelihood of complications, such as hematoma (Goleburn & Golden, 2001), and neurodegenerative processes after injury (Dams-O’Conner et al., 2013; Fleminger et al., 2003; Gardner et al., 2018; Jafari et al., 2013)

• Aging + TBI = increased deficits

 • Cognitive impairment above and beyond normal aging decline (Millis et al., 2001)

 • Outcome worse when TBI sustained later in life and at longer time post injury (Senath-Raja et al., 2010)
Metacognition

• Metacognition = ability to reflect on one’s own cognitive processes (Flavell, 1979)

• Disrupted in normal aging, pathological aging, and TBI populations (Bertrand et al., 2018; Rosen et al., 2014; Thomas, Lee, & Balota, 2013)

• Linked to executive functioning and frontal brain regions (Bivona et al., 2008; Roebers, 2017)
 • Both normal aging and TBI linked to damage/degeneration of frontal regions (Dempster, 1992; Hillary, Moelter, Schatz, & Schute, 2001; Moscovitch & Winocur, 1992; Stuss & Gow, 1992; West, 1996)
(Morales, Lau, & Fleming, 2018; DeMartino et al., 2013; Fleming et al., 2010; McCurdy et al., 2013; Sinanaj et al., 2015)
Previous Study

Integrates other networks and functions (Sridharan et al., 2008)

“Self-referential” thoughts (Raichle et al., 2001)
Previous Findings

• Significant interaction between head injury status (TBI or HC) and internetwork connectivity between the anterior DMN and salience network on metacognitive accuracy

• Significant interaction between head injury status and the posterior region of the DMN and salience network on metacognitive accuracy

Grossner et al., 2019
Development of Current Study

• Previous results from sample of individuals sustaining TBI who are 32-36 years of age and 4 years post head injury

• How might the aging process impact this relationship in a sample of individuals 55 years of age or older who are 10 years post brain injury?
Goals of Current Study

1. Demonstrate metacognitive deficit in a sample of older individuals with TBI compared to a healthy control sample.

2. In a subsample with neuroimaging data, determine the relationship between neural networks and metacognition in older individuals aging with TBI.

3. Examine the impact of age on this relationship.
Establishing Metacognitive Deficit
Participants

Sample 1
- 102 TBI
- 28 HC

<table>
<thead>
<tr>
<th></th>
<th>Age M (SD)</th>
<th>Gender</th>
<th>Education M (SD)</th>
<th>Race</th>
<th>Ethnicity</th>
<th>TPI (years) M (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBI</td>
<td>64.02 (8.07)</td>
<td>70 M, 32 F</td>
<td>13.99 (2.44)*</td>
<td>79 W, 23 B</td>
<td>5 Hispanic, 76 non-Hispanic, 19 not reported</td>
<td>9.60 (6.90)</td>
</tr>
<tr>
<td>HC</td>
<td>64.00 (7.90)</td>
<td>12 M, 16 F</td>
<td>15.64 (2.82)*</td>
<td>21 W, 7 B</td>
<td>28 non-Hispanic</td>
<td>–</td>
</tr>
</tbody>
</table>
Measuring Metacognition

Modified Matrix Reasoning (WAIS-III) task with retrospective confidence judgments

Calculate AUROC using task accuracy and confidence judgments

• Sensitive and bias-free measure of metacognition

I am ____ of my choice.

(a) Completely certain
(b) Certain
(c) Somewhat certain
(d) Somewhat uncertain
(e) Uncertain
(f) Completely uncertain
Results

• TBI group performed significant worse on metacognitive task than healthy control (HC) group, $t(128) = -2.56, p = 0.012, d = 0.55$.

 • TBI M(SD) = 0.64(0.10)
 • HC M(SD) = 0.70(0.09)

• Older individuals with TBI exhibited poorer metacognitive performance than age-matched healthy control individuals
Examining Neural Networks
Participants

Sample 2

- 34 TBI
- 17 HC

<table>
<thead>
<tr>
<th></th>
<th>Age M (SD)</th>
<th>Gender</th>
<th>Education M (SD)</th>
<th>Race</th>
<th>Ethnicity</th>
<th>TPI (years) M (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBI</td>
<td>63.74 (7.59)</td>
<td>21 M, 13 F</td>
<td>14.09 (2.79)</td>
<td>27 W, 7 B</td>
<td>0 Hispanic, 13 non-Hispanic, 4 not reported</td>
<td>10.24 (7.95)</td>
</tr>
<tr>
<td>HC</td>
<td>63.12 (7.62)</td>
<td>12 M, 7 F</td>
<td>14.59 (2.50)</td>
<td>12 W, 5 B</td>
<td>1 Hispanic, 27 non-Hispanic, 6 not reported</td>
<td>--</td>
</tr>
</tbody>
</table>
Procedure

- Using resting state functional connectivity

- Examines functional connections between regions of the brain while at rest (Gusnard & Raichle, 2001)

<table>
<thead>
<tr>
<th>Attention network</th>
<th>Anterior DMN</th>
<th>Salience network</th>
<th>Residual</th>
<th>Frontoparietal network</th>
<th>Posterior DMN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Middle temporal</td>
<td>Middle frontal</td>
<td>Insular cortex</td>
<td>Sensory-motor</td>
<td>Precentral gyrus</td>
<td>Posterior cingulate</td>
</tr>
<tr>
<td>Lateral occipital</td>
<td>Superior frontal</td>
<td>Anterior cingulate</td>
<td>Auditory</td>
<td>Superior parietal</td>
<td>Precuneus</td>
</tr>
<tr>
<td>Ventral frontal</td>
<td></td>
<td>Visual</td>
<td>Visual</td>
<td>Lateral prefrontal</td>
<td>Temporal pole</td>
</tr>
</tbody>
</table>

Note. DMN = default mode network.

Regions derived from Power’s 264 functionally-defined atlas (Power et al., 2011)
Results

• Significant interaction between head injury status and aDMN to pDMN on metacognitive accuracy
 • $R^2 = 0.16$, $p = 0.030$
Results

• Significant interaction between head injury status and aDMN to pDMN connectivity on metacognitive accuracy when controlling for age
 • $R^2 = 0.17$, $p = 0.014$

• But age is not a significant predictor, $p = 0.878$
Discussion

• Connectivity *within* portions of the DMN was associated with metacognitive ability in older population with TBI

• Prior study demonstrated connectivity *between* portions of DMN and salience network association with metacognition in younger population with TBI

• In older population, connectivity remains within network, rather than relying on additional networks to modulate neural activity and cognition

• Relationship not influenced by age
Implications

• Metacognitive deficit demonstrated in this population
 • Specific recommendations for treatment and rehabilitation

• Association of DMN with metacognition
 • Location of brain damage could be an important predictor of metacognitive deficit
Thank You

Funding Sources
- Penn State University RGSO
- Pennsylvania Department of Health
- American Psychological Association (APA) Dissertation Research Award

Collaborators
- Penn State Brain Injury & Plasticity Lab
- Moss Rehabilitation Research Institute
- Penn State Hershey Medical Center