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Abstract 

This project studies the evolution of shallow-water waves for an initial-value problem 
using experiments, modeling, and analysis. To model the behavior of a wavetrain at a water 
surface, we compute solutions to the linearized boundary value problem for water waves. We 
solve for the dispersion relation between frequency and wavenumber and consider various limits 
of the solution. For shallow-water waves, we determine a soliton solution of the full KdV 
equation and solve the linearized equation with given initial conditions, relevant to the 
experiments. In the WGP Fluid Mechanics Lab, a system fabricated with a submerged plate 
abruptly moves horizontally to generate a soliton or vertically to generate an evolving wavetrain. 
We obtain measurements of the surface displacement as a function of distance from the plate 
using two capacitance-type wave gages. We compare the experimental results to predictions 
from our mathematical models. Analytic solutions of the KdV equation agree reasonably well 
with the measurements of the surface displacement obtained from the experiments on solitons. 
Analytic solutions of the linearized KdV equation provide qualitative insight into the observed 
evolution of the evolving wavetrains. 

§I. Introduction

In this paper, we investigate analytically and numerically the evolution of waves at a 
water surface. The study focuses primarily on shallow-water waves, which describe waves for 
which the wavelength is long compared to the water depth. However, we first consider, in 
general, the dispersive effects and wave speed for waves in all depths of water. We conduct 
experiments, in which we generated waves by the pushing, dropping, and lifting of a plastic box, 
and obtained measurements of surface displacement. We compare these measurements with 
graphical representations of our solutions to the full and linearized KdV equation.  

Stokes (1847) first postulated the boundary value problem (BVP) for water waves. Dean 
& Dalrymple (1991) provide the background in fluid mechanics required to derive these 
equations. Stewart (2007) imparts the mathematical tools required to derive the kinematic 
boundary conditions at the free surface. To make the BVP tractable, we follow Dean & 
Dalrymple (1991) who show how to linearize the BVP subject to weak nonlinearity. 
Consequently, their procedure corresponds to small-amplitude waves. We solve the governing 
equation with linearized boundary conditions using the method of separation of variables learned 
from Strauss (2008). 
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Additionally, Dean & Dalrymple (1991) discuss various limits of the resulting dispersion 
relation, including the deep-water limit, in which the waves are short compared to the depth, and 
the shallow-water limit. They show that using asymptotic analysis, one can approximate the BVP 
for waves in shallow water with an evolution equation for the free surface, called the Korteweg 
de Vries (KdV) equation. Using initial conditions relevant to the experiments analyzed herein, 
we solve the linearized version of the KdV equation, following Walsh (2011) and Hammack & 
Segur (1978), who previously conducted similar experiments in shallow water. We compare 
initial value solutions to the KdV equation with the wave experiments. 

This paper is organized as follows. In §II, we describe the methods that we use 
throughout our research project. We present the boundary value problem for water waves in §III. 
First, we introduce the fully nonlinear problem and discuss its difficulties. Then, we show how to 
linearize the problem and find the linear solution, including the dispersion relation. In §IV, we 
focus on shallow-water waves. We find the soliton solution of the KdV equation and solve the 
linearized KdV equation with given initial conditions. We compare the experimental results to 
the corresponding solutions of the full KdV and linearized KdV equation.  

§II. Methodology

For this project, we rely primarily on calculation, modeling, and analysis to develop 
insight into the evolution of surface water waves. We compute and interpret solutions to the 
linearized BVP for water waves and the KdV equation with given initial conditions. We 
determine the solutions by following known techniques from Strauss (2008) and recently 
acquired procedures from Walsh (2011). We utilize methods presented by Dean & Dalrymple 
(1991) to analyze our results. Furthermore, we learn and use the computational software system 
Mathematica to graphically represent the solutions to the mathematical models. Using 
mathematical programs (Henderson, private communication), we compare our graphical 
representations to the laboratory measurements. 

In the William G. Pritchard Fluid Mechanics Lab in the Mathematics Department, we 
conduct physical experiments using the 50ftx10in wave channel. The water depth is 5.5 cm. To 
initiate the propagation of a wavetrain in the wave channel, a system fabricated with a 
submerged plate of known thickness abruptly lowers or raises a given distance. We obtain 
measurements of the evolution of the surface displacement as a function of distance from the 
plate using capacitance-type wave gages. We qualitatively compare the measurements from the 
experiments to the graphical representations of solutions of the KdV equation using 
Mathematica. 

§III. The Fully- Nonlinear Water Wave Boundary Value Problem

We consider the fully nonlinear BVP for water waves, first posited by Stokes (1847), and 
solve its linearization to determine the dispersion relation between frequency and wavelength as 
well as a description of the surface displacement. In this model, we ignore the motions of the air. 
Further, we assume that the water is an incompressible and inviscid fluid, with irrotational 
motions. Mathematically, an incompressible velocity field has zero divergence, and irrotational 
flow signifies zero curl. Since the velocity field of the water particles is incompressible and 
irrotational, we can introduce the velocity potential 𝜙𝜙(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) and reduce the number of 
unknowns by one. Thus, the statement of conservation of mass reduces to Laplace’s equation 
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∆𝜙𝜙 = 𝜙𝜙𝑥𝑥𝑥𝑥 + 𝜙𝜙𝑧𝑧𝑧𝑧 = 0 on −∞ < 𝑥𝑥 < ∞,−ℎ < 𝑧𝑧 < 𝜂𝜂(𝑥𝑥, 𝑡𝑡). (1.1) 

For this two-dimensional model, the wavetrain propagates infinitely along one horizontal 
direction, 𝑥𝑥, with a velocity field that varies in the horizontal and vertical, 𝑧𝑧, directions. The 
uniform water depth, ℎ, defines the bottom boundary. The vertical velocity, therefore, must 
vanish at the bottom boundary, 𝑧𝑧 = −ℎ. The equation describing no flow through the bottom 
boundary is given by:  

𝜙𝜙𝑧𝑧 = 0 on 𝑧𝑧 = −ℎ. (1.2) 

Our model for a monochromatic wave requires periodic boundary conditions in the 
horizontal dimension and with respect to time. At the free surface, the boundary conditions 
dictate that particles on the surface stay on the surface and the pressure jump across the interface 
is balanced by curvature due to surface tension. Using calculus methods from Stewart (2007), we 
derive the kinematic free surface boundary condition, 

𝜂𝜂𝑡𝑡 −  𝜙𝜙𝑧𝑧 +  𝜂𝜂𝑥𝑥𝜙𝜙𝑥𝑥 = 0 on 𝑧𝑧 =  𝜂𝜂(𝑥𝑥, 𝑡𝑡). (1.3) 

The second boundary condition at the free surface, called the dynamic boundary condition, 
dictates a balance of pressure across the surface, which varies due to the restoring forces of 
gravity and capillarity. This condition is given by: 

𝜙𝜙𝑡𝑡 + 𝑔𝑔𝑔𝑔 +  
1
2

[(𝜙𝜙𝑥𝑥)2 + (𝜙𝜙𝑧𝑧)2] = 𝑇𝑇
𝜂𝜂𝑥𝑥𝑥𝑥

[1 + (𝜂𝜂𝑥𝑥)2]3 2�
 on 𝑧𝑧 =  𝜂𝜂(𝑥𝑥, 𝑡𝑡), (1.4) 

where 𝑔𝑔 is the acceleration of gravity and 𝑇𝑇 is the coefficient of the kinematic surface tension. 
The two free surface boundary conditions describing our system are nonlinear. Not only do these 
two equations contain nonlinear terms, but they are also evaluated at an unknown boundary,  
𝑧𝑧 = 𝜂𝜂(𝑥𝑥, 𝑡𝑡). To model the main physics, we linearize the problem in §III.1. 

§III.1. The Linearized Problem

The linearized problem is given by (1.1), (1.2), and the following two linearized versions 
of the boundary conditions evaluated on the quiescent surface: 

𝜂𝜂𝑡𝑡 − 𝜙𝜙𝑧𝑧 = 0 on 𝑧𝑧 = 0 (1.5) 

and 
𝜙𝜙𝑡𝑡 + 𝑔𝑔𝜂𝜂 = 𝑇𝑇𝜂𝜂𝑥𝑥𝑥𝑥 on 𝑧𝑧 = 0. (1.6) 

We use separation of variables to solve Laplace’s equation (1.1) subject to the bottom boundary 
condition (1.2) and periodic boundary conditions in 𝑥𝑥. First, we assume a product of solutions of 
the form: 

𝜙𝜙(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = 𝑋𝑋(𝑥𝑥)𝑍𝑍(𝑧𝑧)𝑌𝑌(𝑡𝑡). (1.7) 

Then, Laplace’s equation (1.1) becomes 
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𝑋𝑋′′(𝑥𝑥)𝑍𝑍(𝑧𝑧)𝑌𝑌(𝑡𝑡) + 𝑋𝑋(𝑥𝑥)𝑍𝑍′′(𝑧𝑧)𝑌𝑌(𝑡𝑡) = 0. (1.8) 

Requiring 𝑌𝑌(𝑡𝑡) ≠ 0 and using algebraic simplification, we obtain  

𝑋𝑋′′(𝑥𝑥)
𝑋𝑋(𝑥𝑥) =

−𝑍𝑍′′(𝑧𝑧)
𝑍𝑍(𝑧𝑧) = 𝜆𝜆, 

(1.9) 

where 𝜆𝜆 is an arbitrary constant. Since we have a function dependent only on 𝑥𝑥 equal to a 
function dependent only on 𝑧𝑧, these functions must both be equal to the same constant. By the 
method of separation of variables, we have reduced the original PDE to equations involving 
ordinary derivatives. Since 𝜆𝜆 is a constant, we find the solutions to each corresponding ordinary 
differential equation (ODE) subject to the boundary conditions for different sign restrictions. To 
avoid the trivial solution and to find solutions periodic in 𝑥𝑥, we select the case where 𝜆𝜆 is 
nonzero and negative. Thus, we consider each side of the equation separately and obtain the 
following two ODEs for 𝜆𝜆 = −𝑘𝑘2 < 0: 

𝑋𝑋′′(𝑥𝑥) + 𝑘𝑘2𝑋𝑋(𝑥𝑥) = 0 (1.10) 

and 
𝑍𝑍′′(𝑧𝑧) − 𝑘𝑘2𝑍𝑍(𝑧𝑧) = 0. (1.11) 

The corresponding solutions are 

𝑋𝑋(𝑥𝑥) = 𝐴𝐴cos(𝑘𝑘𝑘𝑘) + 𝐵𝐵sin(𝑘𝑘𝑘𝑘)  (1.12) 

and 
𝑍𝑍(𝑧𝑧) = 𝐶𝐶𝐶𝐶osh(𝑘𝑘𝑘𝑘) + 𝐷𝐷sinh(𝑘𝑘𝑘𝑘), (1.13) 

where 𝐴𝐴,𝐵𝐵,𝐶𝐶, and 𝐷𝐷 are constants. To determine more information about the solution, we apply 
the boundary conditions. By periodicity, we define 𝑘𝑘 = 2𝜋𝜋

𝐿𝐿𝑥𝑥 
 , where 𝑘𝑘 represents wavenumber and 

𝐿𝐿𝑥𝑥 is the wavelength. We evaluate 𝜙𝜙𝑧𝑧 = 0 at 𝑧𝑧 = −ℎ and use our results to obtain  

𝜙𝜙(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = [𝐴̂𝐴𝑐𝑐𝑐𝑐𝑐𝑐(𝑘𝑘𝑘𝑘) + 𝐵𝐵�𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘𝑘𝑘)]cosh(𝑘𝑘ℎ + 𝑘𝑘𝑘𝑘)𝑌𝑌(𝑡𝑡). (1.14) 

We use a combination of the linearized free surface boundary conditions (1.5-1.6) to determine 
𝑌𝑌(𝑡𝑡). After algebraic manipulation of the linear free-surface boundary conditions, we obtain an 
equation in terms of the velocity potential, given by:  

𝑔𝑔𝜙𝜙𝑧𝑧 = 𝑇𝑇𝜙𝜙𝑥𝑥𝑥𝑥𝑥𝑥 − 𝜙𝜙𝑡𝑡𝑡𝑡  on 𝑧𝑧 = 0. (1.15) 

We determine respective derivatives of (1.14) evaluated at 𝑧𝑧 = 0 and substitute them into (1.15) 
to obtain 

𝑌𝑌′′(𝑡𝑡) + [𝑔𝑔𝑔𝑔tanh(𝑘𝑘ℎ) + 𝑇𝑇𝑘𝑘3tanh(𝑘𝑘ℎ)]𝑌𝑌(𝑡𝑡) = 0. (1.16) 

The solution to (1.16) is  
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𝑌𝑌(𝑡𝑡) = 𝐸𝐸cos(𝜔𝜔𝜔𝜔) + 𝐹𝐹sin(𝜔𝜔𝜔𝜔), (1.17) 

where 𝐸𝐸 and 𝐹𝐹 are constants, 

𝜔𝜔2 = 𝑔𝑔𝑔𝑔tanh(𝑘𝑘ℎ) + 𝑇𝑇𝑘𝑘3tanh(𝑘𝑘ℎ) (1.18) 

is the radian frequency, and (1.18) is called the dispersion relation. It is the relationship between 
wave frequency and wavelength, 𝐿𝐿𝑥𝑥 = 2𝜋𝜋

𝑘𝑘
. 

Hence, we can write our solution as 

𝜙𝜙 = �𝐴̂𝐴cos(𝑘𝑘𝑘𝑘) + 𝐵𝐵�sin(𝑘𝑘𝑘𝑘)�cosh(𝑘𝑘ℎ + 𝑘𝑘𝑘𝑘)[𝐸𝐸cos(𝜔𝜔𝜔𝜔) + 𝐹𝐹sin(𝜔𝜔𝜔𝜔)]. (1.19) 

To solve for the free surface displacement, 𝜂𝜂(𝑥𝑥, 𝑡𝑡), we use (1.5) and (1.19). Taking the partial 
derivative with respect to 𝑧𝑧 of the velocity potential (1.19) and integrating the differentiated 
function with respect to 𝑡𝑡 gives 

𝜂𝜂(𝑥𝑥, 𝑡𝑡) = �𝐴̂𝐴cos(𝑘𝑘𝑘𝑘) + 𝐵𝐵�sin(𝑘𝑘𝑥𝑥)�𝑘𝑘sinh(𝑘𝑘ℎ) �
𝐸𝐸
𝜔𝜔

sin(𝜔𝜔𝜔𝜔) −
𝐹𝐹
𝜔𝜔

cos(ωt)�. (1.20) 

We can combine some constants, use trigonometric identities, and ignore the waves moving in 
the left horizontal direction. In our model, we only consider waves that propagate from left to 
right, which corresponds to the positive 𝑥𝑥-direction. Thus, we can rewrite our solution as 

𝜂𝜂(𝑥𝑥, 𝑡𝑡) = 𝑎𝑎0 cos(𝑘𝑘𝑘𝑘 − 𝜔𝜔𝜔𝜔 + 𝜃𝜃0), (1.21) 

where 𝑎𝑎0 is the amplitude of the linearized wave and 𝜃𝜃0 is the wave's phase shift. Following 
similar procedures and applying the kinematic boundary condition, we can rewrite the velocity 
potential as 

𝜙𝜙(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = 𝑎𝑎0
𝜔𝜔
𝑘𝑘

sin(𝑘𝑘𝑘𝑘 − 𝜔𝜔𝜔𝜔 + 𝜃𝜃0)
cosh[𝑘𝑘(ℎ + 𝑧𝑧)]

sinh(𝑘𝑘ℎ) . 
(1.22) 

§III.2. Limits of the Solution

Here, we consider various limits of the dispersion relation (1.18) to gain insight on the 
behavior of waves for their respective water depth. We determine the corresponding dispersion 
relation by computing the deep-water and shallow-water limit for waves.  

 For deep-water waves, the wavelength is short compared to the depth. Thus, 
 𝑘𝑘ℎ ≫ 1, where 𝑘𝑘 = 2𝜋𝜋

𝐿𝐿𝑥𝑥
 represents the wavenumber and 𝐿𝐿𝑥𝑥 is the wavelength. In this limit, 

lim
𝑘𝑘ℎ→∞

tanh(𝑘𝑘ℎ) = 1, which implies that 𝜔𝜔2 = 𝑔𝑔𝑔𝑔 + 𝑇𝑇𝑘𝑘3. The phase speed, 𝑐𝑐𝑝𝑝 = 𝜔𝜔
𝑘𝑘

, becomes 

𝑐𝑐𝑝𝑝 = �𝑔𝑔𝑔𝑔+𝑇𝑇𝑘𝑘3

𝑘𝑘
 for deep-water waves. Since the speed of the waves depends on the wavelength, 

deep-water waves are dispersive. 
Shallow-water waves correspond to waves with long wavelengths in comparison to the 

depth, such that 𝑘𝑘ℎ ≪ 1. We use Taylor Series expansion to obtain lim
𝑘𝑘ℎ→0

tanh(𝑘𝑘ℎ) = 𝑘𝑘ℎ. 
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In the case of shallow water, the dispersion relation is 𝜔𝜔2 = 𝑔𝑔𝑘𝑘2ℎ + 𝑇𝑇𝑘𝑘4ℎ and the wave speed is 
𝑐𝑐𝑝𝑝 = �𝑔𝑔ℎ + 𝑇𝑇𝑘𝑘2ℎ. 

If surface tension dominates gravity, then phase speed depends on the wavelength, so the 
waves are dispersive. However, shallow-water gravity waves, which have gravitation as the 
dominating restoring force, are non-dispersive. Their speeds for all wavelengths is 𝑐𝑐𝑝𝑝 = �𝑔𝑔ℎ. 

An initial surface deformation initiates a response from the restoring forces, gravitation 
and surface tension, and causes waves to form on the surface. Ripples refer to waves for which 
the two restoring forces are near being balanced. The wavelength corresponding to the balance of 
gravitation and capillary forces can be calculated from the dispersion relation. For ripples in deep 
water, we rewrite (1.18) as  

𝜔𝜔2 = 𝑔𝑔𝑔𝑔(1 +
𝑇𝑇𝑘𝑘2

𝑔𝑔
) 

(1.23) 

We set  𝑇𝑇𝑘𝑘
2

𝑔𝑔
= 1 and obtain the wavenumber, 𝑘𝑘 = 3.634 cm, and wavelength, 𝐿𝐿𝑥𝑥 = 1.728 cm. 

§III.3. Graphs of Solutions

Consider the dispersion relation for deep-water waves. We previously defined the phase 

speed for deep-water waves to be 𝑐𝑐𝑝𝑝 = �𝑔𝑔𝑔𝑔+𝑇𝑇𝑘𝑘3

𝑘𝑘
. Figure 1 shows a graph of the dispersion 

relation in the form of phase speed as a function of 𝑘𝑘. 

Figure 1—Phase Speed Graph 

Using the equation for the dispersion relation of deep-water waves (1.23), we can 
compute the values of the wavenumber, 𝑘𝑘, and wavelength, 𝐿𝐿𝑥𝑥, for various frequencies, 
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𝑓𝑓 = 0.1, 1, 3, 5, 10 𝐻𝐻𝐻𝐻, where 𝑓𝑓 = 𝜔𝜔
2𝜋𝜋

 is the cyclic frequency. We use values for the acceleration 
of gravity as 𝑔𝑔 = 980 𝑐𝑐𝑐𝑐

𝑠𝑠2
 and for the coefficient of the kinematic surface tension as 

𝑇𝑇 = 74.2 𝑐𝑐𝑐𝑐
3

𝑠𝑠2
. Using Newton’s Method learned from Stewart (2007), we solve for the 

wavenumber. Results are listed in Table 1. 

𝑓𝑓 (cycle/𝑠𝑠) 𝜔𝜔(1 𝑠𝑠⁄ ) 𝑘𝑘(1 cm⁄ ) 𝐿𝐿𝑥𝑥(cm) 
0.1 0.2𝜋𝜋 0.004 15597.18 
1 2𝜋𝜋 0.04 155.99 
3 6𝜋𝜋 0.359 17.49 
5 10𝜋𝜋 0.943 6.65 
10 20𝜋𝜋 2.638 2.38 

Table 1— Wavenumber and Wavelength for Varying Frequencies 

Consider a monochromatic wavetrain with a frequency of 3 Hz. Figure 2 shows a graph 
of the free surface, 𝜂𝜂 (1.20), as a function of 𝑥𝑥 at a fixed time 𝑡𝑡 = 0, and for 𝜙𝜙0 = 0. 

Figure 2—A Monochromatic Wavetrain with Frequency 3 Hz 

§IV. The KdV Equation for Shallow-water Waves

In the case of shallow-water waves, one allows for weak dispersion and weak 
nonlinearity to derive the KdV equation. In §III.2, the shallow-water limit provided an 
approximation for the dispersion relation that neglects dispersion. To allow for weak dispersion, 
we evaluate the limit including the first two terms of the Taylor series expansion for tanh(𝑘𝑘ℎ). 
Thus, lim

𝑘𝑘ℎ→0
tanh(𝑘𝑘ℎ) = 𝑘𝑘ℎ + 1

3!
(𝑘𝑘ℎ)3. Additionally, we allow for weak nonlinearity by using an 

asymptotic expansion in a small parameter, 𝜀𝜀. Following Walsh (2011), we define the slow 
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variables, 𝜓𝜓 =  𝜀𝜀 1
ℎ

(𝑥𝑥 − 𝑐𝑐0𝑡𝑡) and 𝜏𝜏 = 𝜀𝜀 𝑐𝑐0
6ℎ
𝑡𝑡, which correspond to slow changes in space and 

time, in terms of 𝜀𝜀 ≪ 1. Models of the slow evolution of wave amplitudes is given by the KdV 
equation: 

𝑢𝑢𝜏𝜏 + 6𝑢𝑢𝑢𝑢𝜓𝜓 + 𝑢𝑢𝜓𝜓𝜓𝜓𝜓𝜓 = 0, (2.1) 

where 𝑢𝑢(𝜓𝜓, 𝜏𝜏) = 3
2ℎ
𝜂𝜂 corresponds to the wave amplitude.  

§IV.1. The Soliton Solution

Following Strauss (2008), we determine a soliton solution of the KdV equation. We 
anticipate a traveling wave solution 𝑢𝑢(𝜓𝜓, 𝜏𝜏) = 𝑓𝑓(𝜁𝜁), where 𝜁𝜁 = 𝜓𝜓 − 𝑐𝑐𝑐𝑐 and 𝑐𝑐 refers to a constant 
speed. Rewriting (2.1), we obtain an ODE, 

−𝑐𝑐𝑓𝑓′ + 6𝑓𝑓𝑓𝑓′ + 𝑓𝑓′′′ = 0. (2.2) 

After integrating, (2.2) becomes 

−𝑐𝑐𝑐𝑐 + 3𝑓𝑓2 + 𝑓𝑓′′ = 𝑎𝑎, (2.3) 

where 𝑎𝑎 is a constant of integration. Next, we multiply both sides of (2.3) by 2𝑓𝑓′ and integrate 
the resulting product to obtain 

−𝑐𝑐𝑓𝑓2 + (𝑓𝑓′)2 + 2𝑓𝑓3 = 2𝑎𝑎𝑎𝑎 + 𝑏𝑏, (2.4) 

where 𝑏𝑏 is a constant. 
We look for a solitary wave solution. Because this solution is localized such that the 

surrounding water has no elevation, the function 𝑓𝑓 and its derivatives tend to 0 as 𝜓𝜓 → ±∞. 
Therefore, we must set, 𝑎𝑎 = 𝑏𝑏 = 0, which gives 

−𝑐𝑐𝑓𝑓2 + (𝑓𝑓′)2 + 2𝑓𝑓3 = 0. (2.5) 

From (2.5), we can derive the solution 

𝑢𝑢(𝜓𝜓, 𝜏𝜏) =
𝑐𝑐
2

sech2[
1
2√

𝑐𝑐(𝜓𝜓 − 𝑐𝑐𝑐𝑐 − 𝜓𝜓0)]. (2.6) 

In laboratory coordinates, this becomes 

𝜂𝜂(𝑥𝑥, 𝑡𝑡) = 𝑎𝑎0 sech2[�
3𝑎𝑎0
4ℎ3

�𝑥𝑥 − 𝑐𝑐0𝑡𝑡 �1 +
𝑎𝑎0
2ℎ
� − 𝑥𝑥0�], 

(2.7) 

where 𝑐𝑐0 = �𝑔𝑔ℎ and 𝑥𝑥0 is an arbitrary constant. From this solution, we observe, as a result of 
nonlinearity, that solitons with increasing amplitude travel with increasing speed.  
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§IV.2. The General Solution

We now linearize the KdV equation (2.1) so that we can analyze the behavior of 
additional, approximate solutions. We obtain 

𝑢𝑢𝜏𝜏 + 𝑢𝑢𝜓𝜓𝜓𝜓𝜓𝜓 = 0. (2.8) 

To assess the dispersion relation for the linearized KdV equation, we consider oscillatory waves 
given by 

𝑢𝑢 ~ 𝑒𝑒𝑖𝑖(𝜔𝜔𝜔𝜔−𝑘𝑘𝑘𝑘). (2.9) 

Substituting (2.9) into (2.8) results in the following equations for the dispersion relation 

𝜔𝜔 = −𝑘𝑘3, (2.10) 

and for the phase speed 
𝑐𝑐(𝑘𝑘) = −𝑘𝑘2. (2.11) 

Here, allowing for weak dispersion decreases the speed of the waves. Waves influenced by 
dispersive effects tend to break up into a train of waves. Weak nonlinearity competes with weak 
dispersion by causing the waves to steepen and increases the speed of the waves. When both 
effects are acting on a wave, the wave remains in a stable form. When nonlinearity and 
dispersion are in perfect balance, one obtains the KdV equation. 

Since (2.8) is linear with constant coefficients, we can use Fourier transforms to find 
solutions. Applying the forward Fourier Transform, we obtain 

𝑢𝑢(𝜓𝜓, 𝜏𝜏) = � 𝐴𝐴(𝑘𝑘, 𝜏𝜏)𝑒𝑒−𝑖𝑖𝑖𝑖𝜓𝜓𝑑𝑑𝑑𝑑
∞

−∞
. 

(2.12) 

After substituting (2.12) into (2.8) and simplifying, we find the solution for 𝐴𝐴(𝑘𝑘, 𝜏𝜏), given by 

𝐴𝐴(𝑘𝑘, 𝜏𝜏) = 𝐴𝐴0𝑒𝑒𝑖𝑖𝑘𝑘
3𝜏𝜏, (2.13) 

where 𝐴𝐴0 is a constant, determined by the initial data. If we apply the Fourier transform to the 
initial conditions, we obtain 

𝐴𝐴0(𝑘𝑘) ≡ 𝐴𝐴(𝑘𝑘, 0) = � 𝑓𝑓0(𝜓𝜓)𝑒𝑒−𝑖𝑖𝑖𝑖𝜓𝜓𝑑𝑑𝑑𝑑
∞

−∞
. 

(2.14) 

and by inverse Fourier transforms, 

𝑢𝑢0(𝜓𝜓) ≡ 𝑢𝑢(𝜓𝜓, 0) =
1

2𝜋𝜋
� 𝐴𝐴(𝑘𝑘)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑
∞

−∞
. 

(2.15) 

Thus, the general solution for an initial condition given by 𝑢𝑢0 is 

𝑢𝑢(𝜓𝜓, 𝜏𝜏) =
1

2𝜋𝜋
� 𝐴𝐴0(𝑘𝑘)𝑒𝑒(𝑖𝑖𝑖𝑖𝑖𝑖+𝑖𝑖𝑘𝑘3𝜏𝜏)𝑑𝑑𝑑𝑑
∞

−∞
. 

(2.16) 
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§IV. 3. Solutions for Given Initial Data

In this section, we look for solutions of the linearized KdV equation for two initial 
conditions. The first condition is an initial upward elevation, and the second condition is an 
initial downward movement. To find solutions, we substitute these initial conditions into the 
general equations obtained using Fourier transforms. 

First, we look at an initial positive-displacement rectangular wave of the form 

𝑢𝑢0(𝜓𝜓) = 𝛼𝛼[𝐻𝐻(𝜓𝜓 + 2𝜆𝜆) − 𝐻𝐻(𝜓𝜓)], (2.17) 

where 𝐻𝐻 is the Heaviside step function given by 

𝐻𝐻(𝜓𝜓 − 𝜓𝜓0) = �1, 𝜓𝜓 > 𝜓𝜓0
0, 𝜓𝜓 < 𝜓𝜓0.

 (2.18) 

To find a solution to the linear KdV equation, we substitute this initial condition into (2.14) to 
obtain 

𝐴𝐴0(𝑘𝑘) = � 𝛼𝛼
0

−2𝜆𝜆
𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑. 

(2.19) 

After evaluating the integral, we find 

𝐴𝐴0(𝑘𝑘) =
𝛼𝛼𝛼𝛼
𝑘𝑘
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖[𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖]. (2.20) 

Rewriting the complex exponential function as a trigonometric function, we obtain 

𝐴𝐴0(𝑘𝑘) =
2𝛼𝛼
𝑘𝑘
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 sin(𝑘𝑘𝑘𝑘), (2.21) 

which implies that the solution corresponding to (2.17) is 

𝑢𝑢(𝜓𝜓, 𝜏𝜏) =
𝛼𝛼
𝜋𝜋
�

sin (𝑘𝑘𝑘𝑘)
𝑘𝑘

∞

−∞
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖+𝑖𝑖𝑖𝑖𝑖𝑖+𝑖𝑖𝑘𝑘3𝜏𝜏 𝑑𝑑𝑑𝑑. 

(2.22) 

Second, we consider a negative-displacement rectangular wave of the form 

𝑢𝑢0(𝑘𝑘) = 𝛼𝛼[𝐻𝐻(𝜓𝜓) − 𝐻𝐻(𝜓𝜓 + 2𝜆𝜆)], (2.23) 

Which is (2.17) multiplied by −1. Therefore, the solution for this initial condition is the negative 
solution of the first initial condition, which is given by 

𝑢𝑢(𝜓𝜓, 𝜏𝜏) = −
𝛼𝛼
𝜋𝜋
�

sin(𝑘𝑘𝑘𝑘)
𝑘𝑘

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖+𝑖𝑖𝑖𝑖𝑖𝑖+𝑖𝑖𝑘𝑘3𝜏𝜏
∞

−∞
𝑑𝑑𝑑𝑑. 

(2.24) 
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To understand the nature of the water surface displacement, we examine the behavior of 
the solution near the wave front for long-time solutions, such that 𝜏𝜏 → ∞.  

The waves we observe near the wave front, for which 𝜓𝜓 → 0, include the waves with the 
fastest speeds. Recall that the wave speed results from a ratio of frequency to wavenumber. 
Hence, the fastest waves correspond to small values of 𝑘𝑘. Correspondingly, we seek waves such 
that 𝑘𝑘 ≈ 0. We rewrite our general solution (2.16) by introducing the following similarity 
variables: 

𝜉𝜉 =
𝜓𝜓

(3𝜏𝜏)1 3�
, (2.25) 

𝜅𝜅 = 𝑘𝑘(3𝜏𝜏)1 3� , (2.26) 

and 𝑔𝑔(𝜉𝜉, 𝜏𝜏) = 𝑢𝑢(𝜓𝜓, 𝜏𝜏) to obtain 

𝑔𝑔(𝜉𝜉, 𝜏𝜏) =
(3𝜏𝜏)−1 3�

2𝜋𝜋
� 𝐴𝐴0[

𝜅𝜅
(3𝜏𝜏)1 3�

]𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖+
𝑖𝑖𝑘𝑘3
3

∞

−∞
𝑑𝑑𝑑𝑑. 

(2.27) 

With further computation, we determine the value of 𝜏𝜏 that provides information on the 
asymptotic behavior of the waves. For an approximation about 𝑘𝑘 ≈ 0, we use Taylor series to 
obtain 

𝐴𝐴0(𝑘𝑘)~𝐴𝐴0(0) + 𝑘𝑘𝐴𝐴′0(0) +
𝑘𝑘2

2
𝐴𝐴′′0(0) + ⋯ 

(2.28) 

We can rewrite the general solution in terms of the similarity variables using this approximation 
for 𝐴𝐴0(𝑘𝑘). Considering (2.28), we rewrite (2.27) as 

𝑔𝑔(𝜉𝜉, 𝜏𝜏) =
1

(3𝜏𝜏)1 3�
�𝐴𝐴0(0)

1
2𝜋𝜋

� 𝑒𝑒𝑖𝑖�𝜅𝜅𝜅𝜅+
1
3𝜅𝜅

3�
∞

−∞
𝑑𝑑𝑑𝑑

+
𝐴𝐴′0(0)

(3𝜏𝜏)1 3�

1
2𝜋𝜋

� 𝜅𝜅𝑒𝑒𝑖𝑖�𝜅𝜅𝜅𝜅+
1
3𝜅𝜅

3�
∞

−∞
𝑑𝑑𝑑𝑑

+
𝐴𝐴′′0(0)

2(3𝜏𝜏)2 3�

1
2𝜋𝜋

� 𝜅𝜅2
∞

−∞
𝑒𝑒𝑖𝑖�𝜅𝜅𝜅𝜅+

1
3𝜅𝜅

3� 𝑑𝑑𝑑𝑑 + ⋯ }, 

(2.29) 

which we can further rewrite in terms of the Airy function: 

𝐴𝐴𝐴𝐴(𝜉𝜉) ∶=
1

2𝜋𝜋
� 𝑒𝑒𝑖𝑖(𝜅𝜅𝜅𝜅+

1
3𝜅𝜅

3)
∞

−∞
𝑑𝑑𝑑𝑑, 

(2.30) 

such that (2.29) becomes 

𝑔𝑔(𝜉𝜉, 𝜏𝜏) =
𝐴𝐴0(0)

(3𝜏𝜏)1 3�
𝐴𝐴𝐴𝐴(𝜉𝜉) +

𝐴𝐴′0(0)

𝑖𝑖(3𝜏𝜏)2 3�
𝐴𝐴𝑖𝑖′(𝜉𝜉) −

𝐴𝐴′′0(0)
2(3𝜏𝜏) 𝐴𝐴𝑖𝑖′′(𝜉𝜉) + Ο�

1
(3𝜏𝜏)4 3�

�. 
(2.31) 
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We can simplify (2.31) for the respective initial data. The solution for the positive initial 
condition, graphed in Figure 3, is  

𝑔𝑔(𝜉𝜉, 𝜏𝜏) =
2𝛼𝛼𝛼𝛼

(3𝜏𝜏)1 3�
[𝐴𝐴𝐴𝐴(𝜉𝜉) +

𝜆𝜆
(3𝜏𝜏)1 3�

𝐴𝐴𝐴𝐴′(𝜉𝜉) −
2
3 𝜆𝜆

2

(3𝜏𝜏)2 3�
𝐴𝐴𝐴𝐴′′(𝜉𝜉) + ⋯ ]. 

(2.32) 

Figure 3—Solution for Initial Positive Displacement 

The solution for the negative initial condition, graphed in Figure 4, is 

𝑔𝑔(𝜉𝜉, 𝜏𝜏) =
−2𝛼𝛼𝛼𝛼

(3𝜏𝜏)1 3�
[𝐴𝐴𝐴𝐴(𝜉𝜉) +

𝜆𝜆
(3𝜏𝜏)1 3�

𝐴𝐴𝐴𝐴′(𝜉𝜉) −
2
3 𝜆𝜆

2

(3𝜏𝜏)2 3�
𝐴𝐴𝐴𝐴′′(𝜉𝜉) + ⋯ ]. 

(2.33) 

Figure 4—Solution for Initial Negative Displacement 



258 

§IV. 4. Experiments

We conducted nine experiments for which the water in the channel was ℎ = 5.5 cm. We 
used a plastic hand-held box to generate solitons and waves corresponding to the initial data. 
Table 2 shows the amplitudes of the first three peaks observed in the experiments. 

Experiment Information Amp 1 (cm) Amp 2 (cm) Amp 3 (cm) 
E1 2.45 cm 0.397 0.183 0.151 
E2 8.45 cm 2.296 1.070 0.940 
E3 6.50 cm 1.472 0.776 0.631 
E4 4.00 cm 0.837 0.480 0.416 
E5 Lowered 0.609 0.310 0.317 
E6 Lowered 0.739 0.569 0.429 
E7 Lowered 0.683 0.342 0.283 
E8 Raised -0.191 -0.150 -0.092
E9 Raised -0.733 -0.392 -0.275

Table 2— Experimental Data. For E1-E4, the second column lists the horizontal distance 
traveled by the box. For E5-E9, the second column indicates whether the box was raised or 

lowered. 

To generate a soliton, we pushed the submerged box, which was placed at one end of the 
tank, forward. In E1, the box was moved 2.45 cm in the direction of the gages. We compare the 
experimental data, denoted by the black line, to the anticipated solution, identified by the colored 
line. Figure 5 shows this comparison for the first soliton peak in the second gage data. 

Figure 5—Comparison of E1 and the Soliton Solution (2.7) 
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E2 follows the same procedure as E1, but the distance of the box changes. The displacement of 
the box was 8.45 cm for the second experiment. Figure 6 compares the data collected on the 
second soliton wave and the corresponding solution.  

Figure 6—Comparison of E2 and the Soliton Solution (2.7) 

For E3, we repeated the same steps, but we pushed the box 6.5 cm. Figure 7 shows a comparison 
of the data and soliton solution.  

Figure 7—Comparison of E3 and the Soliton Solution (2.7) 

In E4 we pushed the box 4.0 cm forward to generate a soliton wave. We compare the collected 
measurements again with our solution, shown in Figure 8. 
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Figure 8—Comparison of E4 and the Soliton Solution (2.7) 

For the soliton experiments, we notice agreement between the experimental 
measurements and the analytic solutions of the full KdV equation. Agreement is qualitatively 
better for the larger amplitude solitons. A next step would be to do an error analysis to make a 
quantitative comparison. Further horizontal distances traveled by the box increase the quality of 
the comparison. The graphed soliton in Figure 6 shows the most agreement, and it corresponds to 
the E2 data. As shown in Table 2, the soliton with the largest amplitude was generated in E2, 
which is the experiment where the box traveled the furthest horizontal distance. Figure 9 shows a 
zoomed in view of the comparison originally shown in Figure 6.  

Figure 9—Closer Look at the E2 Data 
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In E5-E9, we consider a train of waves developed under different initial conditions. For 
E5, we held the box entirely above the surface of the water and abruptly pushed the long edge 
(25.4 cm) of the box down to the bottom of the tank and let go, allowing it to float back up. 
Figure 10 shows the soliton shape of the wave generated in this experiment. 

Figure 10—Comparison of Experiment 5 and the Soliton Solution (2.7) 

In E6, we repeated the previous experiments method for creating waves by the lowering 
of a box but held the box fixed on the bottom. Here, we observe two individual solitons evolving 
along with a train of waves. Figure 11 shows the measured time series. The initial movement is 
upwards because of an initial negative displacement from dropping the box into the water. E7 
considers waves generated by plate depression involving the short edge (10 cm) of the plastic 
box. The waves in this experiment initiate with a soliton followed by a dispersive wavetrain. 
Figure 12 portrays the data collected from this experiment.  

Figure 11—E6 Figure 12—E7 
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For E8 and E9, we abruptly lifted the box out of the water to generate waves in the tank. 
We placed the box vertically in the water and lifted it straight out of the tank. We notice an initial 
downward movement of the water caused by lifting the box. This is the opposite effect observed 
in the initial downward movement conditions. Figure 13 provides a look at the data collected 
from E8, where the box was lifted away from the corner of the tank, so that reflections occurred. 
Figure 14 shows the experimental observations of E9, for which the box lift occurred in the 
corner of the tank, so that reflections did not occur. The initial positive wave for a negative initial 
condition and negative wave for a positive initial condition is consistent with predictions from 
our solutions from (2.27). 

Figure 13—E8 Figure 14—E9

Discussion 
Through our investigation, we developed an understanding of the dispersion of waves in 

various depths and the evolution of shallow-water waves. Solutions to the linearized version of 
the boundary value problem for water waves provide insight into the behavior of a train of waves 
at a water surface. Various limits of the solution reveal the relationship between wave speed and 
wavelength, which explains the non-dispersive property of shallow-water gravity waves. 
Evaluation of the KdV equation for shallow-water waves provides a theoretical insight into the 
stable form and speed of a soliton. The data from the experiments that generate a soliton agree 
reasonably well with the soliton solution of the KdV equation. For the experiments that consider 
wave propagation caused by abruptly pushing a plastic box down into the water, the 
measurements of surface displacement agree qualitatively with our predicted solution for initial 
conditions as do waves obtained from the abrupt raising of the box out of the water. 
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