
Some Overpartition k-tuple Congruence Properties 
 

Robert G. Vary, McNair Scholar, The Pennsylvania State University 
 

Faculty Research Advisor:  Dr. James A. Sellers 
Director of Undergraduate Studies 

Department of Mathematics  
Eberly College of Science 

The Pennsylvania State University 
 

 
   

1  Historical Background and Basic Theory 
 
 
1.1  What is an ``integer partition''? 
 
The following definition is offered in [1]: 
 
Definition 1.1 An  integer partition is a way of splitting a number into integer 

parts.  
 
The idea is very simple, as shown in the following example. Consider the integer 

. The question to ask is: how can  be written as a combination of positive integers less 
than or equal to ? By simple inspection, we yield the following list of answers: 

 
  
 

Each of the elements of this list is itself a partition, and the numbers in each partition are 
referred to as  parts . As one may clearly deduce, the larger the number, the more 
partitions it has. Also of note is the fact that  is the same as , 
that is, order is not accounted for. Typically, the parts of a partition are written in 
nonincreasing order. It is also commonly accepted that the function , where  is a 
positive integer, is the function which counts the number of partitions of . 
 
The next question typically asked by one who studies partitions is, ``What different 
restrictions can I put on two sets of partitions to yield the same number of partitions?'' As 
described in [1], the great mathematician Leonhard Euler asked this question and 
provided a host of solutions, most commonly referred to as Euler Identities. For example, 
let's again consider the number . Consider first the partitions of  that contain only 
distinct parts: 

 
  
 

Now, consider partitions of  containing only odd parts: 
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As is easily seen, both of the lists contain the same number of partitions. Indeed, one can 
show that for any positive number, the number of partitions into odd parts is exactly the 
number of partitions into distinct parts. In fact, the following stronger statement is true, 
where  is the number of partitions of : 

 
Theorem 1.2 (Euler Pairs)  
  

where N is any set of integers such that no element of N is a power of two times an 
element of N, and M is the set containing all elements of N together with all their 
multiples of powers of two.  

 
 
1.2  Congruences 
 
 
Definition 2.1 Consider two integers m and n. If n has remainder r when divided 

by m, then n is said to be  congruent to r modulo m, denoted by  
 
                           

  
In the above definition, if  is divisible by , then this means . Thus 

. For further understanding, refer to the following example. 
 
Example 1 Let . Let , , , , , and 

. Then  
  
  
  

  
 
 
1.3  Generating Functions 
 
As discussed in [1], the entire idea of generating functions for integer partitions 

lies solely on the following fact:  
  

 
To use this fact in finding all integer partitions with one even part and one odd part, each 
of which is less than 5, consider the following:  
 

  (1.3.1) 
  (1.3.2) 
  (1.3.3) 
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Upon further inspection, it is obvious that (1.3.1) lists in each exponent all of the 
partitions satisfying the aforementioned condition. This can be generalized. Let 

, with each  a positive integer. Then consider 
  

  (1.3.4) 
This expression displays all partitions using distinct members of the set .  

Example 2 Let . Then the polynomial from (1.3.4) becomes:  
 
  
 
With that in mind, the following definition is now available.  
 
Definition 3.1 A polynomial or power series whose coefficients represent the 

number of partitions of its exponents is called a  generating function . This function also 
allows for certain restrictions to be placed upon the parts.  

  
In Example 2, the generating function is counting the number of partitions into distinct 
elements from the set . This leads to the following fact for a set of positive integers 

:  
 
  
 

This can also be used if we want to allow parts to only repeat a certain number of times. 
For instance, suppose we want each part to appear up to 3 times in any partition, and that 
we only want to use parts from . Then,  
 

  
 
  
  
  
  
 

 
 

 If , then  
 

  

  
  

  
 
The end of the previous list of equalities is true due to the following known formula for 
the finite geometric series:  
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By letting , we can see that the generating function is still meaningful for letting 
parts appear an arbitrary number of times. We now must require , which is not a 
problem since we do not substitute a value for . So, for ,  
 

  
  

 
Here, the formula for an infinite geometric series was used:  

  
 
Thus, we have a representation for the generating functions of the number of partitions 
for many more cases than we did originally. These generating functions are instrumental 
for successfully proving results. 
 
2  Definitions, Notation and Terminology 

 
 
2.1  What is an ``overpartition''? 
 
In the study of partitions there are always new constructions appearing. Consider 

. We already know its partitions:  
 
  
 

Our new objective is to expand these results into some sort of new idea, then see if our 
new list has any interesting properties. And, if our new construction is done well enough, 
our ultimate goal is to relate it back to unrestricted integer partitions. So, let's consider a 
new list, with each element abiding by these rules:   

    • It is a partition of .  
    • The first occurence of any part may be .  
  

So, how does this change our list for ? Our new list is as follows:  
 

  
  
  
  
  

 
This example motivates the following definition, as stated in [6]. 
 
Definition 1.1 An  overpartition of n is a non-increasing sequence of natural 
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numbers whose sum is n in which the first occurrence of a number may be overlined.  
 
Throughout, the number of overpartitions of a number  will be denoted by , 

with . Also from [6] we have the following generating function for :  
 
  (5) 

 
 
2.2  Overpartition Pairs and -tuples 

 
Overpartitions have been studied quite a bit recently, such as in [4], [5], [7], [9], 

and [12]. As an expansion of overpartitions, the following new construction appeared in 
[10].  

Definition 2.1 An  overpartition pair  of n is a pair of overpartitions where 
the sum of all listed parts is n.  

  
Example 3 The overpartition pairs for  are:  
  
  
 . 
 
 The number of overpartition pairs of  were denoted in [10] by . Also in 

[10], it was discovered that the generating function for  is  

  
This generating function was derived from the generating function for overpartitions. 
Noting how similar this generating function looks compared to the generating function 
for , one can now expand on this idea easily. 

 
Definition 2.2 An  overpartition k-tuple of n is a k-tuple of overpartitions 

 wherein all listed parts sum to n.  
 
We will denote the number of overpartition -tuples by , which 

subsequently means . Based on the generating function for overpartition 
pairs, it is clear that the generating function for overpartition -tuples is  

  
 
3  Known Congruences 

 
 
3.1  Ramanujan 
 
The great mathematician Srinivasa Ramanujan (1887-1920) discovered and 
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proved countless theorems in many fields, including number theory. Directly pertinent to 
this study, and providing most of the inspiration, are the following congruences that 
Ramanujan proved about partitions. 

 
 
 
Theorem 1.1 For all ,  

 
 

 
  
For example, here are tables showing  for some values of , , and 

. 
 

  

        
0   4   5  
1   9   30  
2   14   135  
3   19   490  
4   24   1575  

     
0  5   7  
1  12   77  
2  19   490  
3  26   2436  
4  33   10143  

     
0  6   11  
1  17   297  
2  28   3718  
3  39   31185  
4  50   204226  

 
 
3.2  Overpartition and Overpartition Pair Congruences 
 
Similar to the above, there are many interesting congruences related to  and 

. Some are straightforward, and others take a bit of work to prove. The following is 
a table of the first few values of the overpartition function. 

  
    
 1  2  
2  4  
3  8  
4  14  
5  24  
6  40  
7  64  
8  100 
9  154 
10  232 

  
Clearly, it appears that all of the values for  are even. In fact, the next theorem 
proves just that. 
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Theorem 2.1 For all   
  
Proof.  
  

  

  
 
  
  

Since the coefficients of the terms on the right correspond to the same ones on the left, 
we see that for , .  

 
The next theorem follows from results in [11]. 

 
Theorem 2.2  For all ,  

  

 
Here's a table of the first twenty values for the overpartition function. It is easy to see that 

 for all  that are not square. 
 

                  
    

     
1   2  
2   4  
3   8  
4   14  
5   24  

                                                    
 
 

 
      
 

  

    
6   40  
7   64  
8   100  
9   154  
10   232  

    
11  344  
12  504  
13  728  
14  1040 
15  1472 

     
16   2062  
17   2864  
18   3948  
19   5400  
20   7336  

 
The next two theorems, proved in [8], are a little more involved. 

 
Theorem 2.3 Let  be the number of overpartitions of n into odd parts. Then  
 

   

 
Theorem 2.4 Let  be the number of overpartitions of n into odd parts. Then, 

for all  and for all ,  
  
  

  
Finally, we have a theorem in the spirit of Ramanujan about overpartition pairs, as proven 
in [2]. 

 

 117



Theorem 2.5  For all natural numbers n,  
  

What follows is a table of the first 15 values for the overpartition pairs function. In 
checking the function for values of , one can see that they are all divisible by . 

       
1   4  
2   12  
3   32  
4   76  
5   168  

    
11  8160  
12  14176 
13  24168 
14  40512 
15  66880 

    
6   352  
7   704  
8   1356  
9   2532  
10  4600  

 
     
 
    
 
  

 
4  New Results 

 
The major goal of this research is to see if previous results about overpartitions 

and their pairs could be extended to similar results for overpartition -tuples. The 
forthcoming results accomplished this goal and more. In fact, a few of the 
aforementioned theorems can be more easily proven now, as they are simply corollaries 
of the new results. 

 
Theorem 4.1  For all n 0 and all nonnegative integers , we have  
  
 
Proof.  

  

                              

                              

                              
                             

 

                             

 

                                       

 

                             
 

 Thus, the congruence shown is  
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Since coefficients on either side correspond, and  by definition, the preceding 
implies  

  
for all  and for all nonnegative integers .  

 
 
 With this theorem in hand, a broader theorem is easily proved. 
 
Theorem 4.2  Let  count the number of overpartition k-tuples of n. Let 

k= , where m is a nonnegative integer and r is odd. Then, for all positive integers n,  
  

 
 
 
 
Proof.  

  

                                  

  

  
  

 Just as in Theorem 4.1, the result follows.  
 
After acquiring Theorems 4.1 and 4.2, it seemed something may also occur when 

 and the modulus are simply prime. This is indeed the case as the next theorem shows. 
 
Theorem 4.3 For all  and all  such that , where  is an 

odd prime, we have  
  

 
 
 
Proof.  

  

  

Upon expanding this last product as a power series, the only surviving (non-zero) 
exponents remaining are all multiples of . Thus,  for all positive 
integers  and for all   
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5  The Road Ahead 
 
The new results from the last section are only the beginning of the discovery of 

many results for overpartition -tuples. From here, the goal is to find other congruences 
and identities for different overpartition -tuples. Some possibilities include:  

Conjecture 5.1 For all ,  
 
  
 

where q is prime and r is a quadratic nonresidue mod q.  
 
Theorem 2.5 is a direct corollary of the preceding conjecture. 
 

 
Conjecture 5.2  For all integers , we have  
 

  

 
 
 
Conjecture 5.3  Let  count the number of overpartition k-tuples of n. Let 

k= ,  and r is odd. Then,  

  

 
 
Conjectures 5.2 and 5.3 simply involve raising the power of two in the modulus. 

They are also inspired by [11]. From here, the intention is to ultimately write a paper co-
authored with Dr. Sellers and fellow Penn State student Derrick Keister and publish it in 
a peer-reviewed journal. It will be submitted by October 2008. 
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